欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    基于matlab的图像锐化算法研究与仿真-本科论文.doc

    • 资源ID:91480488       资源大小:724.89KB        全文页数:35页
    • 资源格式: DOC        下载积分:12金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要12金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    基于matlab的图像锐化算法研究与仿真-本科论文.doc

    摘  要在获取图像的过程中,由于多种因素的影响,导致图像质量会有所退化。图像增强的目的在于通过处理有选择地突出便于人或机器分析某些感兴趣的信息,抑制一些无用的信息,以提高图像的使用价值。图像锐化正是图像增强中空间域局部运算方法中的一种,其目的是增强和判断图像的边缘和轮廓信息。而图像锐化的具体方法就是通过微分而使图像边缘突出、清晰。 图像锐化最常用的方法是梯度锐化法,但除梯度算法外,图像锐化的方法还有Roberts、Prewitt、Sobel和Laplacian等多种算法,本文对这些方法进行了介绍、比较和分析。最后对MATLAB做了介绍,并运用MATLAB语言对图像锐化的部分算法进行了实现并记录结果。 通过对各种算法仿真和比较,每种算法都有各自的优缺点。在分析了本论文采用的图像特点后,有针对性的对Laplacian算法进行了改进,即采用高提升滤波来提高图像的亮度。实验结果表明,此方法可行,达到了预期的锐化效果。关键词:图像增强;边缘;MATLAB;图像锐化AbstractIn the process of image acquisiting, the image quality will be degraded due to a variety of factors. Image enhanceing is aimed at highlighting some interested information that is easy to analyze for people and machine and inhibiting some useless information to enhance the image value. Image sharpening is a partion operation method of image enhancing in spatial domain, and its purpose is to enhance and judge the edge of the image and profile information and the specific method of the image sharpening uses differential to make the edge so prominent and clear. The most commonly used method of image sharpening is gradient sharpening. But apart from the gradient algorithm, image sharpening methods also have Roberts, Prewitt, Sobel, Laplacian and etc. These methods were introduced, compared and analyzed. Finally, MATLAB is introduced. And a part of the image sharpening algorithm is achievd and the results afe recorded. Through the simulation and comparison of the various algorithms, each algorithm has its own advantages and disadvantages. After the features of the image using in this paper are analyzed, it improves the Laplacian algorithm contrapositively, namely using high-elevating filtering to improve the brightness of the image. Experimental results show that the method is feasible and achieves the desired sharpening effect.Key words: Image enhancing; Edge;MATLAB; Image Sharpening 目 录1 引 言11.1图像及其特点11.2图像的文件格式11.3 数字图像处理51.3.1 数字图像处理概述51.3.2 数字图像处理发展概况51.3.3数字图像处理主要研究内容61.3.4 数字图像处理的基本特点71.3.5数字图像处理的优点81.3.6 数字图像处理的应用81.4 图像锐化的研究背景101.5研究图像锐化的目的和注意事项101.6本文内容的安排102 图像锐化112.1 微分法112.1.1 梯度法(Gradieut)112.1.2 Sobel算法132.1.3 LOG算子142.2 拉普拉斯算子142.3 高通滤波法152.3.1 空间域高通滤波152.3.2 频率域高通滤波162.3.3 统计差值法(用于勾边处理)172.4 MATLAB中如何实现图像锐化172.5 总结183 锐化的边缘检测法与锐化算子193.1边缘检测法193.1.1 梯度算子193.1.2 梯度算子在MATLAB中的实现203.2拉普拉斯算子213.3 边缘连接方法213.4 边缘检测的MATLAB实现方法223.5 MATLAB的实现程序如下233.6 结论234 MATLAB简介及GUI设计244.1 MATLAB简介244.2图形用户界面GUI244.3 GUI设计原理及简介254.4 设计方法254.4.1 图形用户界面设计工具254.4.2 菜单设计264.4.3 对话框设计264.4.4 句柄图形274.4.5 图形对象句柄命令274.5 总结275 结论与展望285.1 结论285.2 展望28致 谢29参考文献30III基于MATLAB的图像锐化算法研究与仿真1 引 言 据研究,在人类所接受到的全部信息中,约有75%80%是通过视觉系统得到的,和语言或文字信息相比,图像包含的信息量更大、更直观、更确切,因而具有更高的使用效率和更广泛的适应性。当图像以数字形式进行处理和传输时,由于具有质量好、成本低和易于实现等优点,这种存储和传输格式已经成为该领域当前和未来的主要发展趋势。1.1图像及其特点客观世界在空间上是三维(3-D)的,但一般从客观景物得到的图像是二维(2-D)的。一幅图像可以定义为一个二维函数,这里x和y表示2-D空间中一个坐标点的位置,而幅值f则代表图像在坐标上的某种性质的数值。例如常用的图像一般是灰度图,这时f表示灰度值,它常对应客观景物被观察到的亮度1。数字图像常用矩阵来描述。一幅M×N个像素的数字图像,其像素灰度值可以用M行、N列的矩阵G表示:在存储图像时,一幅M行、N列的数字图像(M×N个像素),可以用一个M×N的二维数组T来表示。图像的各个像素灰度值可按一定的顺序存放在数组T中。习惯上把数字图像左上角的像素定义为第(1,1),右下角的像素定义为第(M,N)个像素。数字图像处理,就是把数字图像经过一些特定数理模式的加工处理,以达到有利于人眼视觉或某种接收系统所需要的图像的过程。如对被噪声污染的图像除去噪声,对信息微弱的图像进行增强,对失真的图像进行几何校正等。随着计算机软硬件技术的突飞猛进,以及数字处理技术的不断发展,数字图像处理在科学研究、工业生产、国防以及现代管理决策等各行各业都得到越来越多的应用。1.2图像的文件格式(1) BMP图像文件格式BMP是一种与硬件设备无关的图像文件格式,使用非常广。它采用位映射存储格式,除了图像深度可选以外,不采用其他任何压缩,因此,BblP文件所占用的空间很大。BMP文件的图像深度可选lbit、4bit、8bit及24bit。BMP文件存储数据时,图像的扫描方式是按从左到右、从下到上的顺序。由于BMP文件格式是Windows环境中交换与图有关的数据的一种标准,因此在Windows环境中运行的图形图像软件都支持BMP图像格式。典型的BMP图像文件由三部分组成:位图文件头数据结构,它包含BMP图像文件的类型、显示内容等信息;位图信息数据结构,它包含有BMP图像的宽、高、压缩方法,以及定义颜色等信息。BMP 是(Windows 位图)Windows 位图可以用任何颜色深度(从黑白到24位颜色)存储单个光栅图像。Windows 位图文件格式与其他 Microsoft Windows 程序兼容。它不支持文件压缩,也不适用于Web页从总体上看,Windows位图文件格式的缺点超过了它的优点。为了保证照片图像的质量,请使用PNG 、JPEG、TIFF 文件。BMP文件适用于 Windows 中的墙纸。优点:BMP 支持 1 位到 24 位颜色深度。BMP 格式与现有 Windows 程序(尤其是较旧的程序)广泛兼容。缺点: BMP 不支持压缩,这会造成文件非常大。 BMP 文件不受 Web 浏览器支持。(2) PCX图像文件格式PCX这种图像文件的形成是有一个发展过程的。最先的PCX雏形是出现在ZSOFT公司推出的名叫PC PAINBRUSH的用于绘画的商业软件包中。以后,微软公司将其移植到 Windows环境中,成为Windows系统中一个子功能。先在微软的Windows31中广泛应用,随着Windows的流行、升级,加之其强大的图像处理能力,使PCX同GIF、TIFF、BMP图像文件格式一起,被越来越多的图形图像软件工具所支持,也越来越得到人们的重视。PCX是最早支持彩色图像的一种文件格式,现在最高可以支持256种彩色,如图4-25所示,显示256色的彩色图像。PCX设计者很有眼光地超前引入了彩色图像文件格式,使之成为现在非常流行的图像文件格式。PCX图像文件由文件头和实际图像数据构成。文件头由128字节组成,描述版本信息和图像显示设备的横向、纵向分辨率,以及调色板等信息:在实际图像数据中,表示图像数据类型和彩色类型。PCX图像文件中的数据都是用PCXREL技术压缩后的图像数据。PCX是PC机画笔的图像文件格式。PCX的图像深度可选为l、4、8bit。由于这种文件格式出现较早,它不支持真彩色。PCX文件采用RLE行程编码,文件体中存放的是压缩后的图像数据。因此,将采集到的图像数据写成PCX文件格式时,要对其进行RLE编码:而读取一个PCX文件时首先要对其进行 RLE解码,才能进一步显示和处理。(3) TIFF图像文件格式TIFF (TaglmageFileFormat)图像文件是由Aldus和Microsoft公司为桌上出版系统研制开发的一种较为通用的图像文件格式。TIFF格式灵活易变,它又定义了四类不同的格式:TIFF-B适用于二值图像:TIFF-G适用于黑白灰度图像;TIFF-P适用于带调色板的彩色图像:TIFF-R适用于RGB真彩图像。TIFF支持多种编码方法,其中包括RGB无压缩、RLE压缩及JPEG压缩等。TIFF是现存图像文件格式中最复杂的一种,它具有扩展性、方便性、可改性,可以提供给IBMPC等环境中运行、图像编辑程序。TIFF图像文件由三个数据结构组成,分别为文件头、一个或多个称为IFD的包含标记指针的目录以及数据本身。TIFF图像文件中的第一个数据结构称为图像文件头或IFH。这个结构是一个TIFF文件中唯一的、有固定位置的部分;IFD图像文件目录是一个字节长度可变的信息块,Tag标记是TIFF文件的核心部分,在图像文件目录中定义了要用的所有图像参数,目录中的每一目录条目就包含图像的一个参数。(4) GIF文件格式GIF(Graphics Interchange Format)的原义是"图像互换格式",是CompuServe公司在 1987年开发的图像文件格式。GIF文件的数据,是一种基于LZW算法的连续色调的无损压缩格式。其压缩率一般在50左右,它不属于任何应用程序。目前几乎所有相关软件都支持它,公共领域有大量的软件在使用GIF图像文件。GIF图像文件的数据是经过压缩的,而且是采用了可变长度等压缩算法。所以GIF的图像深度从lbit到8bit,也即GIF最多支持256种色彩的图像。GIF格式的另一个特点是其在一个GIF文件中可以存多幅彩色图像,如果把存于一个文件中的多幅图像数据逐幅读出并显示到屏幕上,就可构成一种最简单的动画。GIF解码较快,因为采用隔行存放的GIF图像,在边解码边显示的时候可分成四遍扫描。第一遍扫描虽然只显示了整个图像的八分之一,第二遍的扫描后也只显示了1/4,已经把整幅图像的概貌显示出来了。在显示GIF图像时,隔行存放的图像会给您感觉到它的显示速度似乎要比其他图像快一些,这是隔行存放的优点。(5) JPEG文件格式 JPEG是joint Photographic Experts Group(联合图像专家组)的缩写,文件后辍名为"jpg"或"jpeg",是最常用的图像文件格式,由一个软件开发联合会组织制定,是一种有损压缩格式,能够将图像压缩在很小的储存空间,图像中重复或不重要的资料会被丢失,因此容易造成图像数据的损伤。尤其是使用过高的压缩比例,将使最终解压缩后恢复的图像质量明显降低,如果追求高品质图像,不宜采用过高压缩比例。但是JPEG压缩技术十分先进,它用有损压缩方式去除冗余的图像数据,在获得极高的压缩率的同时能展现十分丰富生动的图像,换句话说,就是可以用最少的磁盘空间得到较好的图像品质。而且 JPEG是一种很灵活的格式,具有调节图像质量的功能,允许用不同的压缩比例对文件进行压缩,支持多种压缩级别,压缩比率通常在10:1到40:1之间,压缩比越大,品质就越低;相反地,压缩比越小,品质就越好。比如可以把137Mb的BMP位图文件压缩至203KB。当然也可以在图像质量和文件尺寸之间找到平衡点。JPEG格式压缩的主要是高频信息,对色彩的信息保留较好,适合应用于互联网,可减少图像的传输时间,可以支持24bit真彩色,也普遍应用于需要连续色调的图像。JPEG格式是目前网络上最流行的图像格式,是可以把文件压缩到最小的格式,在 Photoshop软件中以JPEG格式储存时,提供11级压缩级别,以010级表示。其中0级压缩比最高,图像品质最差。即使采用细节几乎无损的10 级质量保存时,压缩比也可达 5:1。以BMP格式保存时得到428MB图像文件,在采用JPG格式保存时,其文件仅为178KB,压缩比达到24:1。经过多次比较,采用第8级压缩为存储空间与图像质量兼得的最佳比例。JPEG格式的应用非常广泛,特别是在网络和光盘读物上,都能找到它的身影。目前各类浏览器均支持JPEG这种图像格式,因为JPEG格式的文件尺寸较小,下载速度快。JPEG2000作为JPEG的升级版,其压缩率比JPEG高约30左右,同时支持有损和无损压缩。JPEG2000格式有一个极其重要的特征在于它能实现渐进传输,即先传输图像的轮廓,然后逐步传输数据,不断提高图像质量,让图像由朦胧到清晰显示。此外,JPEG2000还支持所谓的"感兴趣区域" 特性,可以任意指定影像上感兴趣区域的压缩质量,还可以选择指定的部分先解压缩。JPEG2000和JPEG相比优势明显,且向下兼容,因此可取代传统的JPEG格式。JPEG2000即可应用于传统的JPEG市场,如扫描仪、数码相机等,又可应用于新兴领域,如网路传输、无线通讯等等。(6) TGA格式TGA格式(Tagged Graphics)是由美国Truevision公司为其显示卡开发的一种图像文件格式,文件后缀为"tga",已被国际上的图形、图像工业所接受。TGA的结构比较简单,属于一种图形、图像数据的通用格式,在多媒体领域有很大影响,是计算机生成图像向电视转换的一种首选格式。TGA图像格式最大的特点是可以做出不规则形状的图形、图像文件,一般图形、图像文件都为四方形,若需要有圆形、菱形甚至是缕空的图像文件时,TGA可就派上用场了。TGA格式支持压缩,使用不失真的压缩算法。(7) EXIF格式EXIF的格式是1994年富士公司提倡的数码相机图像文件格式,其实与JPEG格式相同,区别是除保存图像数据外,还能够存储摄影日期、使用光圈、快门、闪光灯数据等曝光资料和附带信息以及小尺寸图像。(8) FPX图像文件格式FPX图像文件格式(扩展名为fpx)是由柯达、微软、HP及Live PictureInc联合研制,并于1996年6月正式发表,FPX是一个拥有多重分辨率的影像格式,即影像被储存成一系列高低不同的分辨率,这种格式的好处是当影像被放大时仍可维持影像的质素,另外,当修饰FPX影像时,只会处理被修饰的部分,不会把整幅影像一并处理,从而减小处理器及记忆体的负担,使影像处理时间减少。(9) PNG图像文件格式PNG(Portable Network Graphics)的原名称为"可移植性网络图像",是网上接受的最新图像文件格式。PNG能够提供长度比GIF小30的无损压缩图像文件。它同时提供 24位和48位真彩色图像支持以及其他诸多技术性支持。由于PNG非常新,所以目前并不是所有的程序都可以用它来存储图像文件,但Photoshop可以处理PNG图像文件,也可以用PNG图像文件格式存储。还有如SVG、PSD、CDR、PCD、DXF、UFO、EPS等一些不常见的图像文件格式在这就不做一一介绍了。 1.3 数字图像处理1.3.1 数字图像处理概述数字图像处理(digital image processing)是用计算机对图像信息进行处理的一门技术,使利用计算机对图像进行各种处理的技术和方法。20世纪20年代,图像处理首次得到应用。20世纪60年代中期,随电子计算机的发展得到普遍应用。60年代末,图像处理技术不断完善,逐渐成为一个新兴的学科。利用数字图像处理主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。数字图像处理主要研究以下内容:傅立叶变换、小波变换等各种图像变换;对图像进行编码和压缩;采用各种方法对图像进行复原和增强;对图像进行分割、描述和识别等。随着技术的发展,数字图像处理主要应用于通讯技术、宇宙探索遥感技术和生物工程等领域。 数字图像处理因易于实现非线性处理,处理程序和处理参数可变,故是一项通用性强,精度高,处理方法灵活,信息保存、传送可靠的图像处理技术。主要用于图像变换、量测、模式识别、模拟以及图像产生。广泛应用在遥感、宇宙观测、影像医学、通信、刑侦及多种工业领域。遥感影像数字图像处理的内容主要有: 图像恢复。即校正在成像、记录、传输或回放过程中引入的数据错误、噪声与畸变。包括辐射校正、几何校正等; 数据压缩。以改进传输、存储和处理数据效率; 影像增强。突出数据的某些特征,以提高影像目视质量。包括彩色增强、反差增强、边缘增强、密度分割、比值运算、去模糊等; 信息提取。从经过增强处理的影像中提取有用的遥感信息。包括采用各种统计分析、集群分析、频谱分析等自动识别与分类。通常利用专用数字图像处理系统来实现,且依据目的不同采用不同算法和技术。1.3.2 数字图像处理发展概况数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。在以后的宇航空间技术,如对火星、土星等星球的探测研究中,数字图像处理技术都发挥了巨大的作用。数字图像处理取得的另一个巨大成就是在医学上获得的成果。1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT(Computer Tomograph)。CT的基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,称为图像重建。1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。1979年,这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。与此同时,图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。随着图像处理技术的深入发展,从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想。图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,因人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索的新领域。1.3.3数字图像处理主要研究内容数字图像处理主要研究内容有以下几个方面: 1) 图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。2) 图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。 3) 图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立"降质模型",再采用某种滤波方法,恢复或重建原来的图像。 4) 图像分割图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。 5) 图像描述是图像识别和理解的必要前提。作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。 6) 图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。1.3.4 数字图像处理的基本特点(1) 目前,数字图像处理的信息大多是二维信息,处理信息量很大。如一幅256×256低分辨率黑白图像,要求约64kbit的数据量;对高分辨率彩色512×512图像,则要求768kbit数据量;如果要处理30帧/秒的电视图像序列,则每秒要求500kbit22.5Mbit数据量。因此对计算机的计算速度、存储容量等要求较高2。(2) 数字图像处理占用的频带较宽。与语言信息相比,占用的频带要大几个数量级。如电视图像的带宽约5.6MHz,而语音带宽仅为4kHz左右。所以在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本亦高,这就对频带压缩技术提出了更高的要求。(3) 数字图像中各个像素是不独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。就电视画面而言,同一行中相邻两个像素或相邻两行间的像素,其相关系数可达0.9以上,而相邻两帧之间的相关性比帧内相关性一般说还要大些。因此,图像处理中信息压缩的潜力很大。(4) 由于图像是三维景物的二维投影,一幅图象本身不具备复现三维景物的全部几何信息的能力,很显然三维景物背后部分信息在二维图像画面上是反映不出来的。因此,要分析和理解三维景物必须作合适的假定或附加新的测量,例如双目图像或多视点图像。在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。(5) 数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大。由于人的视觉系统很复杂,受环境条件、视觉性能、人的情绪爱好以及知识状况影响很大,作为图像质量的评价还有待进一步深入的研究。另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究。例如,什么是感知的初始基元,基元是如何组成的,局部与全局感知的关系,优先敏感的结构、属性和时间特征等,这些都是心理学和神经心理学正在着力研究的课题。1.3.5数字图像处理的优点 现性好。数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,则数字图像处理过程始终能保持图像的再现。 处理精度高。按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。对计算机而言,不论数组大小,也不论每个像素的位数多少,其处理程序几乎是一样的。换言之,从原理上讲不论图像的精度有多高,处理总是能实现的,只要在处理时改变程序中的数组参数就可以了。回想一下图像的模拟处理,为了要把处理精度提高一个数量级,就要大幅度地改进处理装置,这在经济上是极不合算的。 适用面宽。图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如X射线图像、射线图像、超声波图像或红外图像等)。从图像反映的客观实体尺度看,可以小到电子显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。这些来自不同信息源的图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像(彩色图像也是由灰度图像组合成的,例如RGB图像由红、绿、蓝三个灰度图像组合而成)组合而成,因而均可用计算机来处理。即只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。 灵活性高。图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。由于图像的光学处理从原理上讲只能进行线性运算,这极大地限制了光学图像处理能实现的目标。而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实。1.3.6 数字图像处理的应用图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。 1) 航天和航空技术方面的应用数字图像处理技术在航天和航空技术方面的应用,除了上面介绍的JPL对月球、火星照片的处理之外,另一方面的应用是在飞机遥感和卫星遥感技术中。许多国家每天派出很多侦察飞机对地球上有兴趣的地区进行大量的空中摄影。对由此得来的照片进行处理分析,以前需要雇用几千人,而现在改用配备有高级计算机的图像处理系统来判读分析,既节省人力,又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。从60年代末以来,美国及一些国际组织发射了资源遥感卫星(如LANDSAT系列)和天空实验室(如SKYLAB),由于成像条件受飞行器位置、姿态、环境条件等影响,图像质量总不是很高。因此,以如此昂贵的代价进行简单直观的判读来获取图像是不合算的,而必须采用数字图像处理技术。如LANDSAT系列陆地卫星,采用多波段扫描器(MSS),在900km高空对地球每一个地区以18天为一周期进行扫描成像,其图像分辨率大致相当于地面上十几米或100米左右(如1983年发射的LANDSAT-4,分辨率为30m)。这些图像在空中先处理(数字化,编码)成数字信号存入磁带中,在卫星经过地面站上空时,再高速传送下来,然后由处理中心分析判读。这些图像无论是在成像、存储、传输过程中,还是在判读分析中,都必须采用很多数字图像处理方法。现在世界各国都在利用陆地卫星所获取的图像进行资源调查(如森林调查、海洋泥沙和渔业调查、水资源调查等),灾害检测(如病虫害检测、水火检测、环境污染检测等),资源勘察(如石油勘查、矿产量探测、大型工程地理位置勘探分析等),农业规划(如土壤营养、水份和农作物生长、产量的估算等),城市规划(如地质结构、水源及环境分析等)。我国也陆续开展了以上诸方面的一些实际应用,并获得了良好的效果。在气象预报和对太空其它星球研究方面,数字图像处理技术也发挥了相当大的作用。2) 生物医学工程方面的应用数字图像处理在生物医学工程方面的应用十分广泛,而且很有成效。除了上面介绍的CT技术之外,还有一类是对医用显微图像的处理分析,如红细胞、白细胞分类,染色体分析,癌细胞识别等。此外,在X光肺部图像增晰、超声波图像处理、心电图分析、立体定向放射治疗等医学诊断方面都广泛地应用图像处理技术。 3) 通信工程方面的应用当前通信的主要发展方向是声音、文字、图像和数据结合的多媒体通信。具体地讲是将电话、电视和计算机以三网合一的方式在数字通信网上传输。其中以图像通信最为复杂和困难,因图像的数据量十分巨大,如传送彩色电视信号的速率达100Mbit/s以上。要将这样高速率的数据实时传送出去,必须采用编码技术来压缩信息的比特量。在一定意义上讲,编码压缩是这些技术成败的关键。除了已应用较广泛的熵编码、DPCM编码、变换编码外,目前国内外正在大力开发研究新的编码方法,如分行编码、自适应网络编码、小波变换图像压缩编码等。 4) 工业和工程方面的应用在工业和工程领域中图像处理技术有着广泛的应用,如自动装配线中检测零件的质量、并对零件进行分类,印刷电路板疵病检查,弹性力学照片的应力分析,流体力学图片的阻力和升力分析,邮政信件的自动分拣,在一些有毒、放射性环境内识别工件及物体的形状和排列状态,先进的设计和制造技术中采用工业视觉等等。其中值得一提的是研制具备视觉、听觉和触觉功能的智能机器人,将会给工农业生产带来新的激励,目前已在工业生产中的喷漆、焊接、装配中得到有效的利用。 5) 军事公安方面的应用在军事方面图像处理和识别主要用于导弹的精确末制导,各种侦察照片的判读,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。目前已投入运行的高速公路不停车自动收费系统中的车辆和车牌的自动识别都是图像处理技术成功应用的例子。 6) 文化艺术方面的应用目前这类应用有电视画面的数字编辑,动画的制作,电子图像游戏,纺织工艺品设计,服装设计与制作,发型设计,文物资料照片的复制和修复,运动员动作分析和评分等等,现在已逐渐形成一门新的艺术-计算机美术。1.4 图像锐化的研究背景随着计算机技术的迅速发展,数字图像处理技术逐渐成熟,如图像平滑、图像锐化等等,本文将主要从图像锐化的各种方法及其实践应用进行阐述。由于人们常常无法事先确定轮廓的取向,因而在选择轮廓增强的微分算子时,必须选择那些不具备空间方向性的和具有周旋不变的线性微分算子,使图象的边缘或线条变得清晰,实现图象的锐化。因此,从图象增强的目的看,它是与图象平滑相反的一类处理。图象的平滑主要是为了消除噪声,噪声并不限于人眼所能看见的失真和变形,有些噪声只有在进行图象处理时才可以发现。图象的常见噪声主要有加性噪比、乘性噪声和量化噪声等。因此对图象的处理是有很有必要的,我们可以很方便的运用一些函数完成数字滤波工作,从而改善图象的质量。1.5研究图像锐化的目的和注意事项图像锐化的目的是使模糊的图像变清晰,增强图像的边缘等细节。图像锐化在增强边缘的同时会增强噪声,因此一般先去除或减轻噪声,再进行锐化处理。图像锐化可以在空间域和频率域通过高通滤波来实现,即减弱或消除低频分量而不影响高频分量。空间域高通滤波主要用模板卷积来实现。需要注意的是,能够进行锐化处理的图像必须具有较高的信噪比,否则锐化之后,信噪比会进一步降低。因此,在对图像锐化处理之前,一般要先去除或者减轻干扰噪声。1.6本文内容的安排本文主要对空间域和频率域的一些图像锐化方法作了相关研究。本文的章节安排如下:第2章介绍了几种图像锐化的方法,包括微分法、拉普拉斯算子、高通滤波法等一些常用的方法。以及它们的基本原理和适用范围,并用MATLAB程序进行仿真。第3章介绍了几种图像边缘检测的方法,包括微分算子法、LOG算子法、Canny算子法等,并用MATLAB程序进行仿真。第4章介绍了MATLAB及GUI设计,包括GUI设计的一些基本原理。第5章本文整体工作地一个总结。同时,还对整个研究工作中的不足和对未来的工作做了分析和展望。2 图像锐化2.1 微分法图像模糊的实质就是图像受到平均或积分运算,因而用它的逆运算“微分”,求出信号的变化率,有加强高频分量的作用,可以使图像轮廓清

    注意事项

    本文(基于matlab的图像锐化算法研究与仿真-本科论文.doc)为本站会员(红****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开