欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2023年微积分大一基础知识经典讲解.pdf

    • 资源ID:91483414       资源大小:182.34KB        全文页数:6页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2023年微积分大一基础知识经典讲解.pdf

    微积分大一基础知识经典讲解 Chapter1 Functions(函数)1、Definition 1)Afunction f is a rule that assigns to each element x in a set A exactly one element,called f(x),in a set B、2)The set A is called the domain(定义域)of the function、3)The range(值域)of f is the set of all possible values of f(x)as x varies through out the domain、)()(xgxf:Note 1)(,11)(2xxgxxxfExample)()(xgxf 2、Basic Elementary Functions(基本初等函数)1)constant functions f(x)=c 2)power functions 0,)(axxfa 3)exponential functions 1,0,)(aaaxfx domain:R range:),0(4)logarithmic functions 1,0,log)(aaxxfa domain:),0(range:R 5)trigonometric functions f(x)=sinx f(x)=cosx f(x)=tanx f(x)=cotx f(x)=secx f(x)=cscx 6)inverse trigonometric functions domain range graph f(x)=arcsinx or x1sin 1,1 2,2 f(x)=arccos x or x1cos 1,1,0 f(x)=arctanx or x1tan R)2,2(f(x)=arccotx or x1cot R),0(3、Definition Given two functions f and g,the composite function(复合函数)gf is defined by)()(xgfxgf Note)()(xhgfxhgf 微积分大一基础知识经典讲解 Example If,2)()(xxgandxxf find each function and its domain、ggdffcfgbgfa)()()xgfxgfaSolution)2(xf422xx 2,(2:domainorxx xxgxfgxfgb2)()()()4,0:02,0domainxx 4)()()()xxxfxffxffc)0,:domain xxgxggxggd22)2()()()2,2:022,02domainxx 4、Definition An elementary function(初等函数)is constructed using combinations(addition 加,subtraction 减,multiplication 乘,division 除)and composition starting with basic elementary functions、Example)9(cos)(2xxF is an elementary function、)()()(cos)(9)(2xhgfxFxxfxxgxxh 2sin1log)(xexxfxaExample is an elementary function、1)Polynomial(多项式)Functions RxaxaxaxaxPnnnn0111)(where n is a nonnegative integer、The leading coefficient(系数).0naThe degree of the polynomial is n、In particular(特别地),The leading coefficient .00aconstant function The leading coefficient .01alinear function The leading coefficient .02aquadratic(二次)function The leading coefficient .03acubic(三次)function 微积分大一基础知识经典讲解 2)Rational(有理)Functions .0)(such that is,)()()(xQxxxQxPxf where P and Q are polynomials、3)Root Functions 4、Piecewise Defined Functions(分段函数)111)(xifxxifxxfExample 5、6、Properties(性质)1)Symmetry(对称性)even function:xxfxf),()(in its domain、symmetric w、r、t、(with respect to 关于)the y-axis、odd function:xxfxf),()(in its domain、symmetric about the origin、2)monotonicity(单调性)A function f is called increasing on interval(区间)I if Iinxxxfxf2121)()(It is called decreasing on I if Iinxxxfxf2121)()(3)boundedness(有界性)below bounded)(xexfExample1 above bounded)(xexfExamp le2 below and above from boundedsin)(xxfExample3 4)periodicity(周期性)Example f(x)=sinx Chapter 2 Limits and Continuity 1、Definition We write Lxfax)(lim and say“f(x)approaches(tends to 趋向于)L as x tends to a”if we can make the values of f(x)arbitrarily(任意地)close to L by taking x to be sufficiently(足够地)close to a(on either side of a)but not equal to a、Note ax means that in finding the limit of f(x)as x tends to a,we never consider x=a、In fact,f(x)need not even be defined when x=a、The only thing that matters is how f is defined near a、2、Limit Laws Suppose that c is a constant and the limits)(limand)(limxgxfaxaxexist、Then 微积分大一基础知识经典讲解)(lim)(lim)()(lim)1xgxfxgxfaxaxax)(lim)(lim)()(lim)2xgxfxgxfaxaxax 0)(lim)(lim)(lim)()(lim)3xgifxgxfxgxfaxaxaxax Note From 2),we have )(lim)(limxfcxcfaxax integer.positive a is,)(lim)(limnxfxfnaxnax 3、1)2)Note 4、One-Sided Limits 1)left-hand limit Definition We write Lxfax)(lim and say“f(x)tends to L as x tends to a from left”if we can make the values of f(x)arbitrarily close to L by taking x to be sufficiently close to a and x less than a、2)right-hand limit Definition We write Lxfax)(lim and say“f(x)tends to L as x tends to a from right”if we can make the values of f(x)arbitrarily close to L by taking x to be sufficiently close to a and x greater than a、5、Theorem)(lim)(lim)(limxfLxfLxfaxaxax|limFind0 xx Example1 Solution xxx|limFind0 Example2 Solution 6、Infinitesimals(无穷小量)and infinities(无穷大量)1)Definition 0)(limxfxWe say f(x)is an infinitesimal as where,x is some number or.Example1 2200limxxx is an infinitesimal as.0 x 微积分大一基础知识经典讲解 Example2 xxx101lim is an infinitesimal as.x 2)Theorem 0)(limxfx and g(x)is bounded、0)()(limxgxfx Note Example 01sinlim0 xxx 3)Definition)(limxfxWe say f(x)is an infinity as where,x is some number or.Example1 1111lim1xxx is an infinity as.1x Example2 22limxxx is an infinity as.x 4)Theorem 0)(1lim)(lim)xfxfaxx)(1limat possiblyexcept near0)(,0)(lim)xfxfxfbxx 13124lim423xxxxExample1 44213124limxxxxx 0 13322lim22nnnnExample2 2213322limnnnn 32 xxxx7812lim23Example3 237812limxxxx Note mnifmnifmnifbabxbxbaxaxannmmmmnnnnx0lim011011,0,0and constants are),0(),0(where00bamjbniajim,n are nonnegative integer、Exercises 微积分大一基础知识经典讲解)6(),0(3122lim)1.12banbnann)1(),1(1)1(lim)22babaxxxx)2(),2(21lim)31baxbaxx 43143lim)1.222nnnn 51)2(5)2(5lim)211nnnnn 343131121211lim)3nnn 1)1231(lim)4222nnnnn 1)1(1321211(lim)5nnn 21)1(lim)6nnnn 443lim)1.3222xxxx 23303)(lim)2xhxhxh 343153lim)322xxxxx 503020503020532)15()23()32(lim)4xxxx 2)12)(11(lim)52xxx 0724132lim)653xxxxx 42113lim)721xxxx 1)1311(lim)831xxx 3211lim)931xxx 61)31)(21)(1(lim)100 xxxxx 21)1)(2(lim)11xxxx 223)3(3lim)1.4xxxx 432lim)23xxx)325(lim)32xxx 1)2544(lim.52xxxx

    注意事项

    本文(2023年微积分大一基础知识经典讲解.pdf)为本站会员(Q****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开