三段式连续加热炉毕业设计.doc
第一章 综 述设计的加热炉为三段式连续加热炉规格:60万吨/年,平炉顶推送式连续加热炉,平炉顶推送式连续加热炉。年工作时间:7200h。按物料在炉内的运动的方式可分为:1步进式炉,其特征是料胚在炉的移动是靠炉底可动的步进梁做矩形轨迹的往复运动,把放置在固定梁上的料胚一步一步地由进料断送到不料端;2转底式环行加热炉,主要是用来加热圆钢坯和其他异型刚坯,也可以加热方坯。这种炉型也用于锻压车间;3链式加热炉,这种炉子用于叠扎薄板坯和板叠的加热或热处理;4辊底式加热炉等,但其内部结构均为相同,一般加热炉由以下各部分组成:炉膛,燃料系统,供风系统,排烟系统,冷却系统,余热利用系统等。其炉膛又是由炉墙,炉顶,炉底组成的一个空间是金属进行加热的地方。5推送式连续加热炉,就是钢坯在炉内是靠推钢机的推力沿炉底滑道不断的向前移动;而推送式加热炉与以上各炉相比有以下优点:(1).单位投资的生产率高。(2)加热一吨钢材所需的工时低。(3)钢坯装炉和出炉非常方便。(4)炉底面积的效率高。(5)在各个温度区对加热速度都能较好的控制。由于温度是逐渐上升的,因此不需要先将炉子冷却就可以进行冷装炉。(6)很少会出现钢坯因出炉的先后不同的麻烦。(7)单位占地面积的生产率高。(8)炉子可以根据工件的合理长度来建造,因为该炉的加热长度超过室式炉的加热长度,故减小了切头切尾的损失,因此使轧机产量有所提高。其推送式连续加热炉,根据炉温制又可分为二段式加热炉,三段式加热炉,多点供热式加热炉。二段式连续加热炉 按炉温制度可分为加热期和预热期,炉膛也相应地分为加热段和预热段,加热薄料的小炉子也有单面加热的。一般多为二面加热,烧煤时设有端部的燃烧室,称为头炉,下加热的燃烧室设在二侧,称为腰炉。烧重油或煤气炉子在上下部的端墙上安装烧嘴,有时侧墙上也安装烧嘴。当坯料的厚度不大,可以采用的二段式炉,但当坯端面较厚时,加热终了后内外上下温度差较大,为了消除温差,必须延长加热时间,但受到物料表面温度的限制。如果表面温度过高,就会产生加热缺陷。这时二段式连续加热炉就不能适应要求。 三段式连续加热炉采取预热期,加热制,均热期的三段温度制度。在炉子的结构上也相应地分为预热段,加热段和均热段,一般有三个供热点,即上加热,下加热与均热段供热。断面尺寸较大物料的加热多采用三段连续加热炉。料坯由炉尾推入后,先进入预热段缓慢升温,出炉咽气温度850-950度,最高不超过1050度,料胚进入加热段后,强化加热表面迅速升温到出炉所要求的温度,允许物料内外有较大温差,最后物料进入温度稍低的均热段进行均热表面温度不再升高,而是使断面上的温度逐渐趋于均匀,均热段的温度一般为1250-1300度,即比物料出炉温度高约50度,现在连续加热炉的加热段及均热段的温度有提高的趋势,加热段超不过1400度,烟气出炉温度也相应提高,同时也很重视温度分布的均匀性,各段温度可以分段自动调节。 三段式的炉型的变化很多,但结构上有一些共同的基本点,炉顶轮廓曲线的变化是很大的,有曲线炉顶,有平炉顶。在加热高合金钢和容易脱碳钢时,预热段温度不允许铁高,加热段不能太长二预热段比一般情况下要长一些,才不至在钢内产生危险的温度应力。 选择合适的加热炉,其要求是:1生产率高在保证质量的前提下,物料加热速度越块越好,这样可以提高加热炉的生产率。2 加热质量好金属的扎制质量与金属加热质量有密切的关系。3燃料消耗低轧钢厂能量的消耗的10%-15%用于加热炉上,节省燃料对降低成本和节约能源都有重大意义,一般用单位燃烧消耗量来评价炉子的工作。 4 炉子寿命长由于高温作用和机械磨损,炉子不可避免会有损坏必须定期进行检修,应尽可能延长炉子的使用寿命,降低修炉的费用。5劳动条件好 要求炉子的机械化及自动化程度高,操作条件好,安全卫生,对环境无污染。 以上五个方面是对加热炉的要求,在对待具体炉子时,应辨证的看待各项指标之间的关系。如提高生产率,提高加热质量和降低燃料消耗量一般是统一的。但有时则有主要有次要。例如一些加热炉过去强调有较高的生产率,但随着能源问题的出则更多是着眼于节能,而适当降低炉子热负荷和生产率。在现今阶段注重节能远大于生产率,所以提高加热炉的节能做事是非常必要的。所以我设计的是蓄热式燃烧技术的加热炉1 蓄热式燃烧技术发展 蓄热式燃烧技术是一项传统技术,早在十九世纪中期就开始应用于高炉、热风炉、焦炉等规模大且温度高的炉子,但传统的蓄热室采用格子砖为蓄热体,传热效率低,蓄热室体积庞大,换向周期长,限制了它在其它工业炉上的应用。 1982年,英国Hot Work Development公司和British Gas研究院合作,成功开发第一座使用陶瓷小球作为蓄热体的新型蓄热式加热炉,节能效果显著。 新型蓄热室采用陶瓷小球或陶瓷蜂窝体作为蓄热体,其比表面积高达2001000m2/m3,比传统的格子砖高几十至几百倍,因此,极大地提高传热效率,使蓄热室的体积可以大为缩小。另外,由于换向装置和控制技术的提高,使得换向周期大为缩短,传统蓄热室的换向周期一般为30分钟至数小时,而新型蓄热室的换向周期仅为0.53分钟。新型蓄热室传热效率高和换向周期短,带来的效果是排烟温度低(200以下),被预热节制的预热温度高(约为炉温的8090%),因此,废气余热得到接近极限的回收,蓄热室的温度效率可达85%以上,热回收效率达80%以上。 二十世纪九十年代以来,国际上在蓄热式燃烧技术的研究或应用方面取得很大进展,并把节能和环保结合起来,提升为“高温空气燃烧技术”(HTAC)1。 2 新型蓄热式燃烧技术原理 蓄热式高温空气燃烧技术原理如图1所示。 图1蓄热式HTAC技术原理示意图新型蓄热式燃烧呈对布置(A、B状态),从鼓风机出来的常温空气由换向阀切换进蓄热式燃烧器B后,再经过蓄热式燃烧器B(陶瓷小球或蜂窝体)时被加热,在极短时间内常温空气被加热到接近炉膛温度(一般为炉膛温度的8090),被加热的高温热空气进入炉膛后,卷吸周围炉内的烟气形成一股含氧量大大低于21的稀薄贫氧高温气流,同时往稀薄高温空气附近注入燃料,燃料在贫氧状态下实现燃烧;与此同时,炉膛内燃烧后的热烟气经过另一个蓄热式燃烧器A排入大气,炉膛内高温热烟气通过蓄热式燃烧器A时将显热储存在蓄热式燃烧器A内的蓄热体,然后以低于150的低温烟气经过换向阀排出。工作温度不高的换向阀以一定频率进行切换,使得两个蓄热式燃烧器处于蓄热与放热状态交替工作,从而达到节能和降低NOX排放量等目的。常用换向周期30180s。 3 蓄热体性能比较 陶瓷小球一般采用1525mm小球,材质要求稍低;蜂窝体壁薄、孔距小,能在较短时间积蓄和释放热量,但对材质要求高,要求材质抗高温蠕变性能稳定。需要指出,采用小球蓄热,热空气温度将比炉温低150200,而蜂窝体蓄热,热空气温度接近炉温。用20mm球体与100孔蜂窝体相比较,传热面积相差7倍,传热能力相差5倍,压力损失大三倍。4 新型蓄热式加热炉的技术优势 (1)节能潜力巨大,节能1530,同时大大缓解了大气的温室气体排放,CO2的排放量降低约30。 (2) 蓄热式燃烧是一种先进的弥漫式燃烧方式,扩展火焰燃烧区域,火焰的边界几乎扩展到炉膛的边界,从而使得炉膛内温度分布均匀,不易形成局部高温,一方面提高了加热质量,另一方面延长了炉膛寿命。 (3)炉膛的平均温度增加,加强了炉内传热,在相同产量情况下,加热炉的尺寸可以缩小1020,对于相同尺寸的加热炉,蓄热式加热炉的产量可以提高1015,解决了旧炉改造的问题,提高了产量和旧炉子的装备水平。 (4)由于火焰不是在烧嘴产生的,而是在炉膛空间内才开始燃烧,因而燃烧噪声低。 (5)采用传统的节能燃烧技术,助燃空气预热温度越高,烟气中的NOx含量越大;而采用蓄热式高温空气燃烧技术,在助燃空气预热温度高达1000情况下,由于燃料在贫氧(220)状态下燃烧,炉内NOx生成量反而大大减少,NOx排放量可达50150ppm,达到国家一级排放标准以上。 (6)炉膛内为贫氧燃烧,使得加热炉加热的钢坯氧化烧损大为减少,钢坯氧化烧损约降低0.3。 第二章 计算部分1由设计规模40万吨/年,确定工作时间数(出去本车间机器大修和检测的时间,机器每天24小时运行,定一年工作小时数为7200h),工作天数为300天。(1) 坯料规格:180×(800-1200)×(1300-2000)mm二、 加热炉性能参数:(1) 炉型:连续推钢式板坯加热炉(双排料)(2) 炉子内宽:4.524米(3) 坯料规格:180×(800-1200)×(1300-2000)mm(4) 加热钢种:碳素结构钢、低合金结构钢(5) 出钢温度:11501230(6) 加热能力:60t/h(坯料长度1.8米,双排)(7) 燃料:高焦混合煤气(2:1) 热值:18002000kcal/NM3 其中焦炉煤气: 焦油:<30mg/NM3硫化物:<2000mg/NM3。(8) 钢坯入炉方式:冷装入炉(9) 炉子单耗:1.26GJ/t(坯)(坯料长度1.8米,双排)计算底部强度:P=1000G/Akg/(m2*h) (教材p154)式中G炉子的小时产量 A炉子布料的面积 A=nlL Nl连续加热炉内钢胚的排数 l料胚的长度 L炉子的有效长度计算炉子额定小时产量G=40×10000/7200=60(t /h )查阅教材p154表5-1取炉底强度p=682kg/m*hp=1000G/Akg/m2 *h可求的炉底面积等于A=600因A=nlL ,取n为双排L=A/nl=600/2×2000/1000=60mA=B×LB=A/L=600/60=10mB等于炉子宽度(理论) 由公式(教材p210)查取C宽度系数为0.2B=2l+3C=2×2+3×0.2=4.6m所以有0.6的余量,可将坯料双排横放入炉适用 高度选定:查阅资料选定.侧加热高度为3m.上加热高度为5m.炉子全高为6m2(查阅教材p251取)CH4=0.4% ,CO =28.6% ,H2=3.1%,CO2=10.5% ,H2S=1.7% ,N2=55.7% 1空气需要量LO=4.76/1001/2CO+1/2H2+2CH4+3/2H2S=10.5413m3/kgLn=nL0 (取n为1.2 ) 查教材p12 N空气消耗系数LN=1.2×10.5413=12.65 m3/kg2燃烧产物量的计算V=1/100CO+H2+3CH4+CO2+2H2S =11.211 m3/kg Vn=V+(n-1)L0 =11.211+(1.2-1)×*10.5413 =13.32 m3/kg 3燃烧产物成份CO2 =(CO+CH4+CO2)1/1OO/Vm*100% =11.911%H2O=(H2+2CH4+H2S+H20)1/00/Vm*100% =10.38%SO2=(H2S+SO2)1/100/Vm*100%=0.0105%N2=(N2*1/100+0.79Ln)/Vm*100% =75.056%O2=0.21(n-1)L0/Vm×100% =3.323%4燃烧产物密度由p0= (28CO+2H2+16CH4+44CO2+28N2+18+H2O) /1/2240+1.293Lm/Vm经计算得p0=1.3343热平衡计算(查表p165表5-3)得单位燃烧b取2300kj/kg煤气低发热值为2200*4.18kj/ m3 由b=BQ低/G (p164) b单位燃料消耗量 G炉子产量 B炉子燃烧消耗量 Q底煤气低发热量由已知b,Q底,G可得B B=Bg/ Q底 =154×1000×2300/(2200*4.18)*1000 =42368 m3/h热量的收入1 燃料的化学热Q=B Q底=42368× 2200*4.18 =3896500kj/h2 燃料带入的物理热。(因使用煤气可忽略)3 空气预热带入的物理热Q3=BnL0C空t空 取C空=1.31447 t空=400 =11506.849×1.2×105412×1.3147×400 =76545305.62(kj/h)4 金属氧化放出的热量Q4=5652Ga (查p163 取a=0.02)=5652×154×1000×0.02=17408160(kj/h)G炉子产量A金属烧损率,一般加热炉中烧损率为a=0.010.03 总的热量收入为Q收入= Q底+ Q3+ Q4+0 =461999987.4+0+76545305.62+17408160 =555953453(KJ/H)热量的支出1 金属加热所需的热Q1=G(I2-I1) 式中I2, I1金属在加热开始与热平衡时的热量Q= G(I2-I1) (查p25 可得C=0.46) =G(C t2-C t1) =114000(0.46×1200-0.46×100) =77924000KJ/H 2 出炉废气带走的热Q2=BVC废T废V单位燃料燃烧产生的废气量C废 T废 出炉废气的比热和温度Q2= BVC废T废 (查p250 得C废=2.3809)=11506.849×13.32×900×2.3809=328438347.2KJ/H3燃料的化学不完全燃烧热损失0.5-3%Q3=RÝN(Qco×pco/100+Qh2p h2/100.)式中Qco ,Qh2.co,h2等可燃烧气体的发热量取损失为总支出的百分之2.2Q3=2.2×Q支出=123164378KJ/H 4 燃料的机械不完全燃烧损失Q4=KBQ(KJ/H)式中K燃料由于机械不完全燃烧而损失的系数对液体燃料及气体燃烧可以忽略,但可以考虑泄露取K=0.03B燃料消耗量B=11506.849×2200*4.18×0.03=3174509.5kj/h5 经过炉子砌体的散热损失Q5=3.6×(T1-T2)×A/(S1/1+S2/2.0.06) T1 炉膛内表面温度 1200T2炉子周围大气温度20S1 ,S2建筑材料的厚度S1=0.25 S2=0.11,2建筑材料的导热系数 1=0.7 2=0.39770.06炉壁外表面大气间传热的热阻 A炉子砌体的散热面积A=B×L+6×L×2+6×B×2 =8.6×28.9+6×28.9×2+6×8.6×2 =762m2 故可得 Q5= 3.6×(1200-20)×698/(0.15/0.8+0.05/0.452+0.06)=3785964/0.17648+0.119417+0.06 =10568400.8kJ/HQ6=qA(KJ/H)Q没平方厘米炉门每小时向外辐射的热量(开启0.3小时则 =0.3)取1小时为单位 A炉孔的面积 (查阅p163的q=38×4018×1000)故可得 Q6=38×4.18×1000×6×8.6×1=8196144kj/hQ7(查p164表5-2 可得Q7约为总支出热量的0.5%) 所以取Q7=Q/0.8×0.05=20527396.7KJ/HQ8为总热量的015%,是炉子水冷构件的热量损失 可的Q8=615821907kj/h 其他化学损失:由 收入=支出 可得 Q9=22546584.8KJ/H列 热 平 衡 表: 热 收 入Kj/h%热 支 出Kj/h%1燃料的化学热461999987.4831 金属加热所需的热77924000142燃料带入的物理热忽 略02 出炉废气带走的热328438347593空气预热带入的物理热76545305.613.83燃料化学不完全燃烧的损失123164382.214金属氧化放出的热174081603.24燃料机械不完全燃烧的损失138599992.3热 收 入 总 和5559534531005经过炉子砌体的散热损失105747001.96炉门及开孔的辐射损失81961440.147炉门及开孔溢气的热损失205273960.378 炉子水冷构件的吸热损失6158219011.19其他热损失225342369.08热 支 出 总 和555953453100第三章 设备的选择1蓄热式烧嘴本方案选用北京神雾公司特有的SWX-D1F型蓄热式烧嘴,即空气单预热、蜂窝体作蓄热体、自带点火装置的蓄热式烧嘴。各个烧嘴能力可调。 供热能力分配如下均热段加热II段加热I段合计烧嘴个数(每侧)上66517下55515烧嘴能力Nm3/h上460460460下600600600总供热能力Nm3/h47007420530017420供热能力比例%27%42.6%30.4%100%2换热器的选择换热器进口烟气温度为850度,出口烟气温度为400度Q=cmt=1.36×235.4×3.409×(850-250) =38.16×106 (冶金设计手册)。其喷流式换热器传热系数为50W/m2c(加热炉教材)。本设计采用两级换热,第一级烟器通口温度设为t1900度,出口温度为650度,冷风进口温度为tl10,出口温度为tl2320度,第二级烟气进口温度为650度,出口温度为t3550度,空气进口温度为320度,出口温度为450度。t1-第一级烟气的进出换热器温差。t2-第二级烟气的进出换热器温差。 t1= t1-t2/m(t1-tl1)/ t2-tl2 =900-650/m(900/650-320) =250/1=250 t2= t2-t3/m(t2-tl2/t3-tl3) =650-550/m(650-320/550-450) =167.5S1-第一级换热器的面积。S2-第二级换热器的面积。S1=1.36×23514×3.409×(850-250)/50×3600×t1 =27.3×109/5×3.6×2.5×106 =607m2S2=1.36×23514×3.409×(650-550)/50×3600×167.5 =10.9×109 /5×3.6×1.68×1063风机的选择(1)助燃风机 型号:9-19-16D 全压:15560Pa 风量:38686 m3/h 转速 1450rpm 4 烟囱的选加热炉烟道系统总能量损失为184.9Pa,烟气标准状态流量为qv=6.88/s,烟囱底部的温度为3200C,烟气的密度为1.28Kg/m3,空气温度为300C,试计算烟囱的高度和直径。 烟囱的 抽力应比总的压头损失大30%,保证抽力有一定的裕量,故其抽力为h抽=184.9×1.30=240.35(Pa) 取烟囱出口流速2=3m/s故烟囱顶部的直径为: d2=1.71烟囱底部直径为 : d1=1.5×1.71=2.56(m)烟囱的平均直径为: d= d1+d2/2=2.56+1.57/2=2.14(m)烟囱底部气流速度为 : d11=4qv/d12=1.34(m/s)烟囱内烟气的平均流速为 :=1+2/2=1.34+3/2=2.17(m/s)为了求烟囱内烟气温度降落,必须根据式(加热炉教材2-85)估计烟囱高度的近似值,H=25×1.71=42.75(m),取H=40米.烟囱底部温度t13200C,金属烟囱,每米高度的温度降落为30C,则烟囱顶部烟气的温度为: t2=320-40=280(0C)烟囱内烟气的平均温度为t=t1+t2/2=320+280/2=300(0C)在3000C时,烟气的密度为: 烟=0烟×1/1+t=1.28×1/1+300/273=0.609(kg/m3)在300C时,空气的密度为: 空=0空/1+t空=1.165(kg/m3)烟囱顶部烟气的动压头为: 0烟22(1+t2)=12.5(pa)烟囱底部烟气的动压头为: 0烟12(1+t1)=1.28×1.342×(1+320/273)=2.45(pa)烟囱内烟气平均流速下的动压头为: 0烟12(1+t)=1.28 ×2.172(1+320/273)=6.56(pa)烟囱内部摩擦阻力造成的压头损失(每米高)为: hw囱=(/d) ×(0烟22/2) ×(1+t)=0.05*6.65/2.14=0.170(pa/m)所以烟囱的高度为:H=h抽+0烟22× (1+t2)/2-0烟22×(1+t1)/( 空-烟)g- hw囱=40m所以取烟囱的直径d为2.14m, 烟囱的高度H为40m。5热炉的基本结构(1)炉型特点加热炉炉型为推钢式连续加热炉,炉尾端进料,炉头短滑坡出料。炉长方向分为加热I段、加热II段和均热段三个供热段,可满足工艺要求的各种温度制度。蓄热式燃烧器布置在炉子两侧的炉墙上。炉内采用四根纵水管,横水管采用T型支撑。由于本方采用空气单预热燃烧系统,70%的烟气经蓄热室由引风机抽出,30%的烟气要由老烟道排出,因此炉尾保留侧排烟烟道。为减少不必要的炉膛空间,该加热炉炉顶、炉底均为阶梯结构。炉尾设置炉顶压下、炉底台高段(预热段)以便刚进炉的钢坯充分吸收经老烟道排出的烟气中的热量。在均热段与加热II段,加热II段与加热I段之间设置上下隔墙,以便于分段控制温度和炉膛压力。(2)炉子主要尺寸炉子有效长度:30300mm炉子总长: 30550mm炉子内宽: 4840mm炉子外宽: 5988mm(3)炉体钢结构炉体钢结构为框架结构,由炉顶横梁、炉侧立柱及护炉钢板等组成。整个框架支撑在混凝土基础上。路体和炉子周围设有必要的走道、平台、梯子及护栏等。(4)炉体砌筑本方案炉墙采用复合内衬整体浇注结构。炉顶采用低水泥浇注料整体浇注。炉底均热段、加热II段最上层用抗渣浇注料整体浇注,下面用耐火砖、轻质耐火砖等砌筑。加热I段全部用高铝砖、耐火砖、轻质耐火砖等砌筑。(5) 炉体各部分的耐火材料组成如下:(1) 炉顶 低水泥浇注料 230mm 膨胀珍珠岩混合料 120mm 共计 350mm(2) 炉墙 低水泥浇注料 310mm 轻质粘土砖(NG1.0) 184mm 硅酸钙板(耐温1000°C) 60mm 普通硅酸铝纤维毡 20mm 共计 574mm(3) 炉底 抗渣浇注料(均热段、加热II段)110mm 高铝砖(加热I段) 116mm 粘土砖 340mm 轻质粘土砖(NG1.0) 136mm 红砖 63441mm(4) 炉底水管包扎(从外到内) 自流快干防爆浇注料 60mm 硅酸铝纤维毯 20mm 共计 80mm(6)炉门炉子出料端设有出料炉门,炉侧墙设有检修门和炉底清渣门。出料门为自由回转炉门,侧墙清渣炉门为手动侧开式。检修门平时用耐火砖干砌。(7)炉底水管由于该炉双排装料,因此供设4根纵水管,纵水管上焊耐热滑块。在供热段,纵水管由横水管支承,横水管间距2552mm,每根横水管的中点设立管支承。在预热段,纵水管由基墙支承。炉底水管的规格如下:纵水管:133×20横水管:168×20立管:133×206生产工艺制度一180mm厚钢坯加热工艺制度1. 加热时间2.252.5h,炉温制度:加10501150加1300均热段12802. 加热时间>2.75h,炉温制度:加1100加1280均热段12603. 加热时间<2.25h,炉温制度:加10501200加1320均热段1300二、 加热200mm厚钢坯,加热时间2.5h,最高炉温可提高207冷却方式设汽包位置定于距离炉尾7米的炉顶上。汽包中心高度:以上部辅件最高点,不超过+8.50米。汽包中心标高初定为6.5米汽包尺寸:1400×9000 mm炉底管冷压力1.01.5MPa。冷却方式:汽化冷却汽化冷却系统要求采用低汽包,由软水站供水,供水 附: 汽包压力表2块汽包压力变送器1个汽包液位变送器1个汽包液位玻璃板液位计2个安全阀1个蒸汽管网调节阀1个上水调节阀1个放散阀1个热水表2个 蒸汽流量计 1个8 加热炉平面布置图说明(见附图):加热炉平面布置图。(3828mm×26900mm)(1) 因装钢辊道和出炉辊道利旧,炉子长度不宜超过31米。(2) 厂房立柱11#至13#间距为12米,13#立柱外1米为电磁站,无利用窨。立柱尺寸为:地坪以上:600×2000mm地下1.4米:1500×2000mm地下1.8米:2500×3800mm地下2.3米:5200×4800mm(3) 天车滑轨高度为9.5米,汽包最高点应低于此高度。天车驾驶室靠近装钢辊道一侧,高度为8米。(4) 高压水除鳞机紧靠加热炉,所以炉子布置应尽量靠近厂房立柱。9加热炉主要设备材料表加热炉筑炉材料表序号材料名称型号规格与性能单位数量单重总重(t)备注1低水泥浇注料JR-60m3104.22.4t/m32502膨胀珍珠岩混合料m317.50.6 t/m310.53锚固砖LZ-65块85112.25kg/块10.44炉墙用4锚固砖LZ-65块194010.54 kg/块20.45炉顶用5无石棉硅钙板1000°Cm317.30.2 t/m33.466轻质粘土砖NG-1.0Tz-3块331031.6 kg/块537粘土砖N-2a多种规格块595543.5 kg/块208.58抗渣浇注料MK-1m38.72.4t/m320.889自流快干防暴浇注料PN-SF9m311.182.4t/m326.8410烧嘴砖莫来石块34521 kg/块17.72高铝质11烧嘴砖莫来石块32544 kg/块17.41高铝质12PVC膨胀板T213高铝砖LZ-55块2563.91.014硅酸铝纤维毯普通型m34.50.20.915硅酸铝纤维毯含锆型m30.30.20.0616红砖块365122.3(kg/块)8417硅藻土砖块50000.653.25合计T729.85加热炉主要金属材料表序号材料名称规格与性能单位数量单重(kg)总重(t)备注1无缝钢管F168×20m79.272.995.78无缝钢管F133×20m17655.389.75无缝钢管F50×3.5m16.24.0165无缝钢管F108×10m5024.171.212炉皮钢板6mmm225047.111.76炉皮钢板20mmm256.41578.863工字钢36Bm15465.68910.12工字钢10#m7911.260.8934槽钢25Bm51731.33516.21槽钢20Bm18125.7774.675耐热滑块4Cr25Ni20TiRe块1726.361.094耐热滑块2Cr25Ni20块2326.31.5骑卡式耐热滑块块1566锚固钩F20m2572.470.635炉墙吊挂锚固钩F10m19260.6171.188炉顶吊挂7抓钉个80000.050.4水管包扎8清渣炉门、框套825029检修炉门、框套43571.4310清渣炉门套81691.35211出料炉门个3250.32512其它3合计147.2蓄热式加热炉燃烧系统主要设备表序号设备名称型号规格与性能单位数量单重(t)总重(t)备注1旋塞阀X43W-10DN125个34每台配作1个法兰2旋塞阀X43W-10DN150个32每台配作1个法兰3煤气快速切断阀3Z FIG 120 CVDN100个24煤气快速切断阀3Z FIG 120 CVDN150个325空气蝶阀DN150个34每台配作1个法兰6空气蝶阀DN200个32每台配作1个法兰7波纹补偿器0.25YLTN150x3JDN150个34无法兰8波纹补偿器0.25YLTN200x3JDN200个32无法兰9三通换向阀SWHXF-2.5DN250个32每台配作3个法兰10三通换向阀SWHXF-1.5DN150个2每台配作3个法兰11橡胶柔性补偿器RBD900II-350DN900个1带2个配套法兰12引风机Y9-38No11.2D风量:5428560317Nm3/h台113风压:44624570Pa14电机:315M-415功率:132KW16蓄热式烧嘴SWD1F-450460 Nm3/h套3417蓄热式烧嘴SWD1F-600600 Nm3/h套3218球阀Q11F-16C1/2”个6819球阀Q11F-16C3/4”个6620球阀Q11F-16C1”个6621不锈钢球阀Q11F-16P3/4”个6622闸阀Z44W-10DN200个4每台配作1个法兰24旋塞阀X43W-10DN50个20每台配作2个法兰25旋塞阀X13W-10DN15个2026金属软管LJRD20EL-1000DN20根132点火烧嘴用27金属软管LJRD25EL-600DN25根66点火烧嘴用28压缩空气过滤器DN25个129截止阀J41T-16DN25个230储气罐1.2m3个131金属硬密封蝶阀D343P-1DN100个2每台配作2个法兰32金属硬密封蝶阀D343P-1DN150个32每台配作2个法兰33止回阀H41T-16DN25个1每台配作2个法兰34除水器个1蓄热式加热炉燃烧系统主要材料表序号设备名称型号规格与性能单位数量单重(kg/m)总重(t)备注1无缝管DN100F108´4m0