简单线性回归案例课件.ppt
简单线性回归案例1BGv建立我国1978-2008年最终消费支出与国内生产总值之间的回归模型,进行参数以及总体的显著性检验,并对经济模型进行预测。2BG一、统计分析v1、图形分析:在估计模型前,可以借助图形可以直观观察经济变量的变动规律和相关关系。v2、相关性分析v3、因果关系分析3BG二、模型实际操作v在Eviews对话框中,点击Quick菜单中Equation Estimation选项,在Equation specification对话框中键入变量y c x,其中的c是指一个常量。然后在Estimation settings 对话框中method(方法)下选择LS-Least Squares(NLS and ARMA),即最小二乘法。sample(样本)中的1978 2008表示的是起止年份。vls gdp c cons4BG5BG三、输出结果说明v回归系数(coefficient):每个系数乘相应的解释变量就形成了对被解释变量的最佳预测。系数度量的是它所对应的解释变量对于预测的贡献。C的系数序列是回归中的常数项或截距项,它表示所有其他解释变量取零时预测的基础水平。其他参数可以解释为对应解释变量和被解释变量之间的斜率关系。6BGv标准差(std.error,SE):主要用于衡量回归系数的统计可靠性。标准误差越大,回归系数估计值越不可靠。根据回归理论,回归系数的真值位于系数估计值一个标准差之间的概率大约为2/3,位于两个标准差之内的概率大约为95%。vT统计量(t-Statistic):这是在假设检验中用来检验系数是否等于某一特定值的统计量。T统计量检验的是某个系数是否为零(即该变量是否不存在于回归模型中),它等于系数与其标准误差之比。如果t统计量的值大于1,则该系数的真值至少有2/3的可能性不为零,如果t统计量的值大于2,则该系数的真值至少有95%的可能性不为零。7BGv双侧概率(prob):此列显示了在t分布中取得前一列的t统计量的概率。通过这一信息可以方便地分辨出是拒绝还是接受系数真值为零的假设。在正常情况下,概率低于0.05即可认为对应系数显著不为零。v可决系数(R-squared):R2衡量的是在样本范围内用回归来预测被解释变量的好坏程度。R2=1说明回归拟合很完美,若R2=0,则回归拟合程度较差,R2是被解释变量能够被解释变量所解释的部分。注意,如果回归没有截距项或常数项,R2可能是负值。8BGv调整的可决系数(adjusted R-squared):它与R2相当接近,只是在方差的度量上有微小差异,数值比R2小。v回归标准误差(SE of regression):这是一个对预测误差大小的总体度量。它和被解释变量的单位相同,是对残差大小的度量。大约2/3的残差将落在正负一个标准误差的范围内,而95%的残差将落在正负两个标准残差的范围内。v残差平方和(Sum squared resid):它是残差的平方和,可以用作一些检验的输入值。9BGv对数似然估计值(Log likelihood):这是在系数估计值的基础上对对数似然函数的估计值(假定误差服从正态分布)。可以通过观察方程的约束式和非约束式的对数似然估计值的差异来进行似然比检验。vDW统计量(Durbin-Watsonstat):这是对序列相关性进行检验的统计量,如果它比2小很多。则证明这个序列正相关。10BGv赤池信息准则(Akaike info criterion):即AIC,它对方程中的滞后项数选择提供指导。它是在残差平方和的基础上进行的。在特定条件下,可以通过选择是AIC达到最小的方式来选择最优滞后分布的长度,AIC的值越小越好。v施瓦茨准则(Schwarz criterion):与AIC类似,它们具有基本相同的解释。11BGvF统计量(F-Statistic):这是对回归式中的所有系数均为零(除截距项或常数项)的假设检验。如果F统计量超过了临界值,那么至少有一个系数可能不为0。例如,如果有三个解释变量和100个观测值,则F统计量大于2.7将表明在至少95%的可能性上这三个变量中的一个或多个不为0。根据F统计量下一行给出的概率也可以方便地进行这项检验,如果概率值小于0.05,则说明至少有一个解释变量的回归系数不为零。12BGv一元线性回归模型的结果分析v样本回归方程为:vs=(1045.481 0.009607)vt=(3.608824 52.04354)vR2=0.989407 F=2807.530 DW=0.112499 SE=4322.57813BG四、模型检验v1、经济意义检验v经济意义检验就是根据经济理论判断估计参数的正负号是否合理,大小是否适当。经济意义检验要求具备较为扎实的经济理论基础。v就本例而言,收入增加会带动消费增加,边际消费倾向的取值范围为01,回归方程中X的系数表示边际消费倾向,回归结果为0.49957,符合经济理论中的绝对收入假说,表示我国国内生产总值每增加100亿元,最终消费支出平均增加49.957亿元。常数项3772.956表示自发消费,自发消费应该大于零,回归结果与经济理论相符。14BGv2、估计标准误差评价v估计标准误差是根据样本资料计算的,用来反映被解释变量的实际值与估计值的平均误差程度的指标,SE越大,则回归直线的精度越低;反之,则越高,代表性越好。当SE=0时,表示所有的样本点都落在回归直线上,解释变量之间的表现为函数关系。v本例中,SE=4322.578,即估计标准误差为4322.578亿元,它代表我国最终消费支出估计值与实际值之间的平均误差为4322.578亿元。15BGv3、拟合优度检验v拟合优度是指样本回归直线与样本观测数据之间的拟合程度,用样本决定系数的大小来表示。决定系数用来描述解释变量对被解释变量的解释程度。v就本例而言,R2=0.989407,说明本校回归直线的解释能力为98.9407,表示我国最终消费支出Y的总变差中,由解释变量国内生产总值X解释的部分占98.9407,或者说,我国最终消费支出变动的98.9407可由样本回归直线作出解释,模型的拟合优度较高。16BGv4、显著性检验v显著性检验有两种方法,第一个方法为T检验,第二个方法为P值法。v(1)T检验v对于b0和b1,t统计量分别为3.608824和52.04354。给定0.5,查t分布表,在自由度为n-229下,临界值t/2(29)=2.0452。因为,v所以、显著不为零。v(2)P值法v看图2.2.20表格中的Prob.列,表示参数估计值T检验对应的P值,如果P值小于0.05,说明在显著水平为0.05时,参数显著不为0。常数项C对应的P值为0.00110.05,所以显著不为零;解释变量X对应P值为0.00000.05,所以显著不为零。图2.2.20最后一行中Prob(F-statistic)是F检验对应的P值,0.0000000.05,说明回归方程显著成立。v这就说明国内生产总值与最终消费支出之间确实具有显著的线性关系。17BG五、模型预测v在估计出的“Equation”框里选“Forecast”项,Eviews将自动计算出样本估计期内的被解释变量的拟合值,拟合变量默认为YF。18BGv单击Equation窗口中的“Resids”按钮,将显示模型的拟合图和残差图19BGv单击Equation窗口中的“View”下的“Acutal,Fitted,Residual”项下的“Acutal,Fitted,Residual Table”按钮,可以得到拟合值和残差的有关结果 20BGv若2009年中国国内生产总值为335353亿元,下面我们来预测2009年我国最终消费支出。v在workfile窗口上点击Proc下面的Structure/Resize Current page。或使用命令expand start end。v在Workfile:Untitled对话框中双击X(解释变量),将第32个x值输入(本例中数值为335353,有时可能需要点击“Edit+/-”按钮)v打开Equation对话框,点击“Forecast”,可以修改预测值保存的名称(默认Yf),点击确认即可得到预测值序列Yf。从Workfile对话框中双击YF,就可得到Eviews软件自动计算出预测结果。21BG