欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    矩阵特征值和特征向量计算.ppt

    • 资源ID:91525957       资源大小:424KB        全文页数:66页
    • 资源格式: PPT        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    矩阵特征值和特征向量计算.ppt

    第九章.矩阵特征值和特征向量计算 但高次多项式求根精度低,一般不作为求解方法.目前的方法是针对矩阵不同的特点给出不同的有效方法.工程实践中有多种振动问题,如桥梁或建筑物的振动,机械机件、飞机机翼的振动,及一些稳定性分析和相关分析可转化为求矩阵特征值与特征向量的问题。1.幂法和反幂法.一、幂法 求矩阵的按模最大的特征值与相应的特征向量。它是通过迭代产生向量序列,由此计算特征值和特征向量。两种特殊情况幂法小结二、幂法的加速 因为幂法的收敛速度是线性的,而且依赖于比值,当比值接近于1时,幂法收敛很慢。幂法加速有多种,介绍两种。三、反幂法 反幂法是计算矩阵按模最小的特征值及特征向量的方法,也是修正特征值、求相应特征向量的最有效的方法。反幂法的一个应用2.Jacobi方法一、矩阵的旋转变换二、Jacobi方法3.QR方法一、基本QR方法 60年代出现的QR算法是目前计算中小型矩阵的全部特征值与特征向量的最有效方法。实矩阵、非奇异。理论依据:任一非奇异实矩阵都可分解成一个正交矩阵Q和一个上三角矩阵R的乘积,而且当R的对角元符号取定时,分解是唯一的。可证,在一定条件下,基本QR方法产生的矩阵序列A(k)“基本”收敛于一个上三角阵(或分块上三角阵)。即主对角线(或主对角线子块)及其以下元素均收敛,主对角线(或主对角线子块)以上元素可以不收敛。特别的,如果A是实对称阵,则A(k)“基本”收敛于对角矩阵。因为上三角阵的主对角元(或分块上三角阵中,主对角线子块的特征值)即为该矩阵的特征值,故当k充分大时,A(k)的主对角元(或主对角线子块的特征值)就可以作为A的特征值的近似。基本的QR方法的主要运算是对矩阵QR分解,分解的方法有多种。介绍一种Schmit正交化方法为例。基本QR方法每次迭代都需作一次QR分解与矩阵乘法,计算量大,而且收敛速度慢。因此实际使用的QR方法是先用一系列相似变换将A化成拟上三角矩阵(称为上Hessenberg矩阵),然后对此矩阵用基本QR方法。因为拟上三角矩阵具有较多零元素,故可减少运算量。化A为相似的拟上三角阵的方法有多种。二、豪斯豪尔德(Householder)变换三、化一般矩阵为拟上三角阵四、拟上三角矩阵的QR分解五、带原点移位的QR方法模型误差方法误差测量误差 舍入误差数值分析复习数值逼近基本思想:基函数方法基本理论:Lagrange,Newyor型基函数,分 段插值公式样条插值构造方法。作用区别,算法、误差公式(理解与应用)拟合方法的正交多项式系的概念。DFT与FFT的构成,公式与算法。数值积分:几何意义,基本公式,算法,误差。Romberg求积法的理论依据与算法。数值代数理论:列主元Gauss消元法、矩阵表示与计算量LU分解算法与用途。向量范数与矩阵范数。迭代方法的统一表示与松弛法收敛性定理与误差估计幂法逆幂法理论与算法。降阶与加速方程求解理论:二分法的条件与收敛速度。一般迭代,Newton迭代、Aitken方法、理论依据与算法。方程组求解 Newton 法与最速下降法基本理论。常微分方程Euler 方法的理论解释、收敛性。数值稳定性概念与分析方法。Runge-Katta 方法 的算法产生与稳定性分 析。方程组的 R-K 算法公式。

    注意事项

    本文(矩阵特征值和特征向量计算.ppt)为本站会员(wuy****n92)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开