结构化学-绪言课件.ppt
结构化学结构化学绪绪 言言结构化学的研究范围结构化学的主要内容结构化学的发展历程结构化学的学习方法第一章 量子力学基础知识1.1 微观粒子的运动特征 经典物理学遇到了难题 19世纪末,物理学理论(经典物理学)已相当完善:Newton力学Maxwell电磁场理论Gibbs热力学Boltzmann统计物理学 上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。黑体:能全部吸收外来电磁波的物体。黑色物体或开一小孔的空心金属球近似于黑体。黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。经典理论与实验事实间的矛盾:经典电磁理论假定,黑体辐射是由黑体中带电粒子的振动发出的,按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。Wien(维恩)曲线能量波长实验曲线Rayleigh-Jeans(瑞利金斯)曲线黑体辐射能量分布曲线按经典理论只能得出能量随波长单调变化的曲线:Rayleigh-Jeans把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。Wien假定辐射波长的分布与Maxwell分子速度分布类似,计算结果在短波处与实验较接近。经典理论无论如何也得不出这种有极大值的曲线。1.黑体辐射与能量量子化2.光电效应与光的波粒二象性光电效应:光照射在金属表面,使金属发射出电子的现象。金属光电子Ek00光电子动能与照射光频率的关系1900年前后,许多实验已证实:照射光频率须超过某个最小频率0,金 属才能发射出光电子;增加照射光强度,不能增加光电子的动能,只能使光电子的数目增加;光电子动能随照射光频率的增加而增加。经典理论不能解释光电效应:经典理论认为,光波的能量与其强度成正比,而与频率无关;只要光强足够,任何频率的光都应产生光电效应;光电子的动能随光强增加而增加,与光的频率无关。这些推论与实验事实正好相反。Einstein光子学说 1905年,Einstein在Planck能量量子化的启发下,提出光子说:光是一束光子流,每一种频率的光其能量都有一个最小单位,称为光子,光子的能量与其频率成正比:h光子不但有能量,还有质量(m),但光子的静止质量为零。根据相对论的质能联系定律mc2,光子的质量为:mh/c2,不同频率的光子具有不同的质量。光子具有一定的动量:pmch/ch/(c)光的强度取决于单位体积内光子的数目(光子密度)。产生光电效应时的能量守恒:hwEkh0+mv2/2 (脱出功:电子逸出金属所需的最低能量,wh0)用Einstein光子说,可圆满解释光电效应:当hw时,0,光子没有足够能量使电子逸出金属,不发生光电效应;当hw时,0,这时的频率就是产生光电效应的临阈频率(0);当hw时,0,逸出金属的电子具有一定动能,Ekhh0,动能与频 率呈直线关系,与光强无关。光的波粒二象性只有把光看成是由光子组成的光束,才能理解光电效应;而只有把光看成波,才能解释衍射和干涉现象。即,光表现出波粒二象性。波动模型是连续的,光子模型是量子化的,波和粒表面上看是互不相容的,却通过Planck常数,将代表波性的概念和与代表粒性的概念和p联系在了一起,将光的波粒二象性统一起来:=h,ph/电子衍射示意图 CsI箔电子衍射图实物微粒波的物理意义Born的统计解释Born认为,实物微粒波是几率波:在空间任一点上,波的强度和粒子出现的几率成正比。用较强的电子流可在短时间内得到电子衍射照片;但用很弱的电子流,让电子先后一个一个地到达底片,只要时间足够长,也能得到同样的电子衍射照片。电子衍射不是电子间相互作用的结果,而是电子本身运动所固有的规律性。实物微粒的波性是和微粒行为的统计性联系在一起的,没有象机械波(介质质点的振动)那样直接的物理意义,实物微粒波的强度反映粒子出现几率的大小。对实物微粒粒性的理解也要区别于服从Newton力学的粒子,实物微粒的运动没有可预测的轨迹。一个粒子不能形成一个波,但从大量粒子的衍射图像可揭示出粒子运动的波性和这种波的统计性。原子和分子中电子的运动可用波函数描述,而电子出现的几率密度可用电子云描述。测不准关系是经典力学和量子力学适用范围的判据例如,0.01kg的子弹,v1000m/s,若v v1%,则,xh/(mv)6.61033m,完全可忽略,宏观物体其动量和位置可同时确定;但对于相同速度和速度不确定程度的电子,xh/(mv)7.27105m,远远超过原子中电子离核的距离。测不准关系是微观粒子波粒二象性的客观反映,是对微观粒子运动规律认识的深化。它限制了经典力学适用的范围。微观粒子和宏观粒子的特征比较:宏观物体同时有确定的坐标和动量,可用Newton力学描述;而微观粒子的坐标和动量不能同时确定,需用量子力学描述。宏观物体有连续可测的运动轨道,可追踪各个物体的运动轨迹加以分辨;微观粒子具有几率分布的特征,不可能分辨出各个粒子的轨迹。宏观物体可处于任意的能量状态,体系的能量可以为任意的、连续变化的数值;微观粒子只能处于某些确定的能量状态,能量的改变量不能取任意的、连续的数值,只能是分立的,即量子化的。测不准关系对宏观物体没有实际意义(h可视为0);微观粒子遵循测不准关系,h不能看做零。所以可用测不准关系作为宏观物体与微观粒子的判别标准。几率密度:单位体积内找到电子的几率,即*。电子云:用点的疏密表示单位体积内找到电子的几率,与*是一回事。几率:空间某点附近体积元d中电子出现的概率,即*d。用量子力学处理微观体系,就是要设法求出的具体形式。虽然不能把看成物理波,但是状态的一种数学表达,能给出关于体系状态和该状态各种物理量的取值及其变化的信息,对了解体系的各种性质极为重要。波函数(x,y,z)在空间某点取值的正负反映微粒的波性;波函数的奇偶性涉及微粒从一个状态跃迁至另一个状态的几率性质(选率)。波函数描述的是几率波,所以合格或品优波函数必须满足三个条件:波函数必须是单值的,即在空间每一点只能有一个值;波函数必须是连续的,即的值不能出现突跃;(x,y,z)对x,y,z的一级微商也应是连续的;波函数必须是平方可积的,即在整个空间的积分*d应为一有限数,通常要求波函数归一化,即*d1。2.2.力学量和算符力学量和算符假设:对一个微观体系的每个可观测的力学量,都对应着一个线性自轭算符。算符:对某一函数进行运算,规定运算操作性质的符号。如:sin,log线性算符:(12)1 2自轭算符:1*1 d1(1)*d或1*2 d2(1)*d例如,id/dx,1expix,1*exp-ix,则,exp-ix(id/dx)expixdxexp-ix(-expix)dx-x.expix (id/dx)expix *dxexpix(-expix)*dx-x.量子力学需用线性自轭算符,目的是使算符对应的本征值为实数。力学量与算符的对应关系如下表:力学量算符力学量算符位置 x势能 V动量的x轴分量px动能T=p2/2m角动量的z轴分量Mzxpyypx总能量E=T+V SchrSchrdingerdinger方程方程能量算符的本征方程,是决定体系能量算符的本征值(体系中某状态的能量E)和本征函数(定态波函数,本征态给出的几率密度不随时间而改变)的方程,是量子力学中一个基本方程。具体形式为:对于一个微观体系,自轭算符给出的本征函数组1,2,3形成一个正交、归一的函数组。归一性:粒子在整个空间出现的几率为1。即 i*id1正交性:i*jd0。由组内各函数的对称性决定,例如,同一原子的各原子轨道(描述原子内电子运动规律的波函数)间不能形成有效重叠(H原子的1s和2px轨道,一半为,另一半为重叠)。正交性可证明如下:设有 iaii;jajj;而aiaj,当前式取复共轭时,得:(i)*ai*i*aii*,(实数要求aiai*)由于i*jdaji*jd,而(i)*jdaii*jd 上两式左边满足自轭算符定义,故,(aiaj)i*jd0,而aiaj 故 i*jd04.4.态叠加原理态叠加原理假设:若1,2 n为某一微观体系的可能状态,由它们线性组合所得的也是该体系可能的状态。组合系数ci的大小反映i贡献的多少。为适应原子周围势场的变化,原子轨道通过线性组合,所得的杂化轨道(sp,sp2,sp3等)也是该原子中电子可能存在的状态。非本征态的力学量的平均值若状态函数不是力学量A的算符的本征态,当体系处于这个状态时,a,但这时可用积分计算力学量的平均值:a*d例如,氢原子基态波函数为1s,其半径和势能等均无确定值,但可由上式求平均半径和平均势能。本征态的力学量的平均值 设与1,2 n对应的本征值分别为a1,a2,an,当体系处于状态并且已归一化时,可由下式计算力学量的平均值a(对应于力学量A的实验测定值):5.Pauli原理原理假设:在同一原子轨道或分子轨道上,至多只能容纳两个自旋相反的电子。或者说,两个自旋相同的电子不能占据相同的轨道。Pauli原理的另一种表述:描述多电子体系轨道运动和自旋运动的全波函数,交换任两个电子的全部坐标(空间坐标和自旋坐标),必然得出反对称的波函数。电子具有不依赖轨道运动的自旋运动,具有固有的角动量和相应的磁矩,光谱的Zeeman效应(光谱线在磁场中发生分裂)、精细结构都是证据。微观粒子具有波性,相同微粒是不可分辨的。(q1,q2)=(q2,q1)费米子:自旋量子数为半整数的粒子。如,电子、质子、中子等。(q1,q2,qn)(q2,q1,qn)倘若q1q2,即 (q1,q1,q3,qn)(q1,q1,q3,qn)则,(q1,q1,q3,qn)0,处在三维空间同一坐标位置上,两个自旋相同的电子,其存在的几率为零。据此可引伸出以下两个常用规则:Pauli不相容原理:多电子体系中,两自旋相同的电子不能占据同一轨道,即,同一原子中,两电子的量子数不能完全相同;Pauli排斥原理:多电子体系中,自旋相同的电子尽可能分开、远离。玻色子:自旋量子数为整数的粒子。如,光子、介子、氘、粒子等。(q1,q2,qn)(q2,q1,qn)1.3 箱中粒子的Schrdinger方程及其解一维势箱 V0 0 xl(区)V x0,xl(、区,0)Schrdinger方程:VV0V0lx此方程为二阶常系数线性齐次方程,相当于:yqy0 (1)设yex,代入(1),得 2ex+qex=0,ex0 则,2q0,1iq1/2,2iq1/2,属一对共轭复根:1i,2 i,这里,0,q1/2 其实函数通解为 yex(c1cosx+c2sinx)(根据欧拉公式)方程(1)的通解为 yc1cosq1/2x+c2sinq1/2x 对于一维势箱,q82mE/h2,c1cos(82mE/h2)1/2x+c2sin(82mE/h2)1/2x (2)根据品优波函数的连续性和单值性条件,x0时,0 即 (0)c1cos(0)+c2sin(0)=0,由此 c1=0 x=l时,(l)c2sin(82mE/h2)1/2l=0,c2不能为0(否则波函数处处为0)只能是(82mE/h2)1/2l=n n1,2,3,(n0,(否则波函数处处为0)En2h28ml2 n1,2,3,(能量量子化是求解过程中自然得到的)将c1=0和En2h28ml2 代入(2),得 (x)c2sin(nx/l)C2可由归一化条件求出,因箱外0,所以En2h28ml2 n1,2,3,习题:P35 12,13 受一定势能场束缚的粒子的共同特征粒子可以存在多种运动状态,它们可由1,2,n等描述;能量量子化;存在零点能;没有经典运动轨道,只有几率分布;存在节点,节点越多,能量越高。量子效应:上述特征的统称。当En=n2h2/8ml2中m、l增大到宏观数量时,能级间隔变小,能量变为连续,量子效应消失。只要知道了,体系中各力学量便可用各自的算符作用于而得到:(1)粒子在箱中的平均位置(2)粒子动量的x轴分量px(3)粒子的动量平方px2值一维试箱模型应用示例丁二烯的离域效应:E定=22h28ml2=4E1E离=2h2/8m(3l)2+222h2/8m(3l)2 =(10/9)E1势箱长度的增加,使分子能量降低,更稳定。CCCCCCCCE14/9E11/9E1定域键离域键lll3l花菁燃料的吸收光谱R2N(CHCH)rCHN+R2势箱总长l248r+565pm,共有2r22个电子,基态时需占r+2个分子轨道,当电子由第(r+2)个轨道跃迁到第(r+3)个轨道时,需吸收光的频率为=E/h=(h/8ml2)(r+3)2-(r+2)2=(h/8ml2)(2r+5),由=c/,=8ml2c/(2r+5)hr 计算 实验1 311.6 309.02 412.8 409.03 514.0 511.0说明此体系可近视看做一维势箱。结构化学的研究范围结构化学的研究范围 原子、分子和晶体的微观结构原子、分子和晶体的微观结构 原子和分子的运动规律原子和分子的运动规律 物质的结构与性能间的关系物质的结构与性能间的关系结构化学的主要内容决定反映原子结构(原子中电子的分布和能级)分子结构(化学键的性质和分子的能量状态)晶体结构(晶胞中分子的堆垛)实验方法(IR、NMR、UPS、XPS、XRD)结构与性能的关系(结构 性能)微观粒子运动所遵循的量子力学规律结构化学的学习方法培养目标培养目标用微观结构的观点和方法分析、解决化学问题学习方法学习方法把握重点(原理、概念、方法)重视实验方法(衍射法、光谱法、磁共振法)结构与性能间的关系