垃圾填埋场地下水污染监测与防治课件.ppt
垃圾填埋场对地下水的污染垃圾填埋场对地下水的污染及地下水污染监测与防治及地下水污染监测与防治伍玉良 张超2015.101 1垃圾渗滤液的产生及其特性垃圾渗滤液的产生及其特性2 2地下水污染监测的必要性地下水污染监测的必要性3 3地下水污染监测方案地下水污染监测方案4 4地下水污染特性及评价地下水污染特性及评价地下水地下水污染监测与防治污染监测与防治5 5地下水污染的预防措施地下水污染的预防措施6 6污染后的治理措施污染后的治理措施7 7监测治理案例监测治理案例1 垃圾渗滤液的产生及其特性垃圾渗滤液的产生及其特性1.1.渗滤液的来源渗滤液的来源产生量影响因素产生量影响因素 包括降雨、降雪,是渗滤液的主要来源。来自场地表面上坡方向的径流水,地表径 流对渗滤液的产生量也有较大的影响。包括垃圾自身携带的水分以及从大气和雨 水中吸附的水分。填埋垃圾经厌氧分解会产生水分,其产生 量与垃圾的组成、pH值、温度和菌种有关。q 获水情况q 场地地表条件q填埋垃圾组分q 填埋场构造q 操作规范渗滤液产生量的影响因素渗滤液产生量的影响因素垃圾渗滤液水质特性垃圾渗滤液水质特性氨氮氨氮氨氮氨氮浓度高浓度高浓度高浓度高水质水质水质水质波动大波动大波动大波动大1 12 23 3有机物有机物有机物有机物浓度高浓度高浓度高浓度高其中腐殖酸为小分子有机酸,和氨基酸又合成的大分子产其中腐殖酸为小分子有机酸,和氨基酸又合成的大分子产物物,是渗滤液中长期性的最主要有机污染物。是渗滤液中长期性的最主要有机污染物。一般在一般在5005002000mg/L2000mg/L之间之间,进入填埋后期,浓度可高达进入填埋后期,浓度可高达10000mg/L10000mg/L。CODCOD、BOD5BOD5、可生化性随填埋时间的增长而下降并逐渐、可生化性随填埋时间的增长而下降并逐渐维持在较低水平。维持在较低水平。垃圾渗滤液水质变化垃圾渗滤液水质变化渗滤液水质变化示意图渗滤液水质变化示意图中国环境科学研究院研究员赵章元说过:“国内外再好的卫生填埋场都会渗漏,这只是年限的问题。”防渗漏的隔膜内部结构会随时间发生变化早在2001年,赵章元团队在中国地质大学的帮助下利用原本用于勘探地矿的环境地球物理技术方法,开始以北京为例对垃圾填埋场地面进行扫瞄,并第一次发出声音:垃圾填埋场对地下水有污染,北京市地下水严重超标,多年超标率较高的为氨氮、硝氮、铬和汞等,地下水有机污染严重。垃圾填埋场区别于焚烧发电厂的环境风险:一是在于垃圾渗滤液的地下水污染;二是恶臭和蚊蝇对周边居民的二次污染。垃圾填埋场受修建时条件约束,防渗膜暴露面积大、垃圾和渗滤液拦截坝容易被破坏等,容易造成渗滤液污染。垃圾成分复杂,其中的建筑垃圾、金属等易刺穿防渗膜造成地下水污染等等 2 地下水污染监测的必要性地下水污染监测的必要性由于操作不规范、人为破坏、或者自然灾害等,而且防渗体本身可能存在缺陷或接头不密封等现象,会因故发生开孔、破裂、解体、动物咬啮等状况,失去防渗作用,从而使渗滤液成为地下水的污染源。渗滤液具有浓度高,流动缓慢,渗漏持续时间长等特点,会成为地下水的集中污染源,地下水一旦受到污染就很难恢复,从而严重威胁生活和生产供水,甚至会造成不堪设想的后果。3 地下水监测方案地下水监测方案生活垃圾填埋场污染控制标准 GB 16889-2008生活垃圾卫生填埋场环境监测技 术要求GB/T 18772-2008生活饮用水标准检验方 法GB/T 5750-2006生活垃圾卫生填埋场环境监测技术要求GB/T 18772-2008 地下水质量标准 GB/T 14848-1993地下水监测井地下水监测井地下水监测井结构示意图地下水监测井结构示意图地下水污染监测方案地下水污染监测方案单项组分评价单项组分评价:按地下水质量标准GB14848-1993表1所列限值,按最差指标所属类别确定水质类别,划分为五类,分别为I类至V类。综合评价:综合评价:首先进行各单项组分评价,划分组分所属质量类别,按照下表确定单位组分评价分值Fi。各单项组分评分值Fi的平均值;Fmax各项组分评价分值Fi中的最大值;n 项数。根据F值,按下表划分地下水质量级别。按如下公式计算综合评价分值F。式中:4 地下水污染特性及评价地下水污染特性及评价地下水本底水质地下水本底水质5 地下水污染的预防措施地下水污染的预防措施其他预防措施修复底部防渗衬层中间覆盖顶部覆盖顶部覆盖控制外部条件渗滤液回喷等生活垃圾卫生填埋技术规范一般每层垃圾填埋厚度约为2.53.0m减少渗滤液的产生生活垃圾卫生填埋场封场技术规程封场和生态环境恢复防止地面降水或地表径流:生活垃圾卫生填埋场防渗系统工程技术规范天然的防渗材料人工合成防渗材料地下水污染的防护措施地下水污染的防护措施重庆市云阳县垃圾处理场渗滤液回喷工艺示意图重庆市云阳县垃圾处理场渗滤液回喷工艺示意图瑞典的垃圾处理技术瑞典的垃圾处理技术在瑞典,每个人都知道“垃圾就是能源,4吨垃圾等于1吨石油”。而这一切得益于瑞典先进的垃圾处理循环系统。瑞典处理废弃物 有4个层次 欧盟数据统计委员会的数据显示,瑞典人制造的生活垃圾中,被填埋的 非可再生垃圾只占1%,36%可得到循环利用,14%再 生成化肥,另外 49%被焚烧发电。1 1首先考虑回收再利用首先考虑回收再利用2 2回收有困难的,尝试生物处理回收有困难的,尝试生物处理3 3生物技术处理不了的,焚烧处理生物技术处理不了的,焚烧处理4 4确实不能焚烧的再掩埋确实不能焚烧的再掩埋瑞典是欧盟中垃圾焚烧比例最高的国家之一,垃圾被投入1000摄氏度高温的锅炉中焚烧,产生大量热能,通过连接着城市四通八达的供暖管道为城市居民供暖。瑞典废弃物管理局的资料显示,垃圾焚烧为瑞典人提供约20%的城市供暖,同时满足25万家庭用电之所需。以第二大城市哥德堡为例,全市约1/2的暖气供应来自垃圾焚烧产生的余热。治理措施6 污染后的治理措施污染后的治理措施污染后的治理措施污染后的治理措施隔离阻断措施隔离阻断措施 目前使用的垂直隔离措施有防渗墙、竖向隔离墙、深层搅拌桩墙、灌浆帷幕、高压喷射灌浆板墙等。要求首先要明确地下水的污染范围,并且实际施工工程量大,投资大,质量要求高。污染后的治理措施污染后的治理措施垂直防渗墙垂直防渗墙隔离措施隔离措施污染后的治理措施污染后的治理措施地下曝气地下曝气 被渗滤液污染的地下水中有机物质含量一般较高,可以利用曝气的方式让其发生生物好氧降解反应,促进地下水的自净作用。一般使用预埋曝气管的方式使饱和带或包气带中的溶解氧含量提高,强化被污染水体中微生物的好氧生物降解,使其净化。地下安排曝气管难度很大,地下水污染的范围较广,曝气的范围相应增大,另一方面土壤和含水层本身对氧的溶解能力有限,曝气难度加大,该方法耗资较大。污染后的治理措施污染后的治理措施反应墙或反应井反应墙或反应井典型的可渗透反应墙示意图典型的可渗透反应墙示意图垃圾垃圾地下水流向地下水流向渗滤液渗滤液处理后的地下水处理后的地下水污染后的治理措施污染后的治理措施人工补给或抽水人工补给或抽水 采用人工补给的方法可以加快被污染地下水的稀释和自净作用。采用抽水的方法将被污染地下水抽走,然后用洁净的水回灌,达到净化地下水的目的。这两种方法都采用人为方法加快地下水的循环,促进其净化作用。投资高、效果不理想,不能有效治理二次污染。水力截获水力截获这种方式适合于不与水混溶且密度比水小的污染物。人为地在地下水流经的路径上形成一定的水力坡降,并在该处挖沟渠从而将浮于上面的不溶物质去除,达到净化地下水的目的。这种方式不适用于垃圾处理场地下水污染。污染后的治理措施污染后的治理措施原位生物修复原位生物修复2005年重庆市长寿区垃圾处理场污泥入场与地下水原位生物修复示意图年重庆市长寿区垃圾处理场污泥入场与地下水原位生物修复示意图7 监测治理案例监测治理案例铜梁县垃圾处理场位于铜梁县太平镇万寿村,经重庆大学环境评估,北京市工程设计研究总院设计,建于2006年,2008年10月投入使用,日处理垃圾量200-300吨。2012年4月,对铜梁县垃圾处理场进行监督性监测的结果显示:2号地下水监测井pH不合格,氨氮超标21.35倍,亚硝酸盐氮超标18741874倍倍,氯化物超标0.744倍;膜下水氯化物超标0.692倍,亚硝酸盐氮超标287.5287.5倍倍。而2011年监测结果均符合地下水质量标准GB14848-1993类水标准要求。监测点布设示意图监测点布设示意图受污染地下水收集池受污染地下水收集池垃圾场附近鱼塘垃圾场附近鱼塘监测治理案例铜梁垃圾处理场监测治理案例铜梁垃圾处理场监测治理案例监测治理案例生活垃圾填埋场污染控制标准生活垃圾填埋场污染控制标准GB 16889-2008GB 16889-2008生活饮用水标准检验方法生活饮用水标准检验方法GB/T 5750-2006GB/T 5750-2006地下水质量标准地下水质量标准GB/T 14848-1993GB/T 14848-1993生活垃圾卫生填埋场环境监测技术要求生活垃圾卫生填埋场环境监测技术要求GB/T 18772-2008GB/T 18772-2008生活垃圾卫生填埋场防渗系统工程技术规范生活垃圾卫生填埋场防渗系统工程技术规范CJJ113-2007CJJ113-2007生活垃圾卫生填埋技术规范生活垃圾卫生填埋技术规范CJJ17-2004CJJ17-2004生活垃圾卫生填埋场封场技术规程生活垃圾卫生填埋场封场技术规程CJJ112-2007CJJ112-2007地地下下水水污污染染监监测测相相关关标标准准相关标准汇总相关标准汇总谢 谢!