中考数学知识点教案七篇.docx
中考数学知识点教案七篇中考数学知识点教案【篇1】教材分析教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和性质。教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。大多数学生会想到用测量角的方法,此时就可以安排小组活动。每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材提供的表中。最后发现,大小、形状不同的三角形,每一个三角形内角和都在180°左右。三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180°。二是把三个内角折叠在一起,发现也能组成一个平角。每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于90°,钝角三角形里的两个锐角和小于90°。学情分析学生在前面的学习中已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,知道了平角是180°学生通过前几年的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯,所以在学生具备这些数学知识和能力的基础上,来引导学生探索和发现三角形内角和是180°这一性质。要让学生明确一个三角形分成两个小三角形后,每个三角形内角和还是180°,两个小三角形拼成一个大三角形,大三角形的内角和也是180°。教学目标1、知识目标:让学生探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。2、能力目标:培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。3、情感目标:培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。教学重点和难点教学重点:掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题。教学难点:让学生经历探索和发现三角形的内角和是180°的过程。教学过程:(一)、激趣导入:1、认识三角形内角我们已经认识了什么是三角形,谁能说出三角形有什么特点?(三角形是由三条线段围成的图形,三角形有三个角,。)请看屏幕(课件演示三条线段围成三角形的过程)。三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及它的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)2、设疑激趣现在有两个三角形朋友为了一件事正在争论,我们来帮帮它们。(播放课件)同学们,请你们给评评理:是这样吗?现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?这节课我们就一起来研究这个问题。(板书课题:三角形的内角和)(二)、动手操作,探究新知1、探究特殊三角形的内角和师拿出两个三角板,问:它们是什么三角形?(直角三角形)请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。(由于学生在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°)从刚才两个三角形内角和的计算中,你们发现了什么?(这两个三角形的内角和都是180°)。这两个三角形都是直角三角形,并且是特殊的三角形。2、探究一般三角形内角和(1)猜一猜。猜一猜其它三角形的内角和是多少度呢?(可能是180°)(2)操作、验证一般三角形内角和是180°。所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?(可以先量出每个内角的度数,再加起来。)测量计算,是吗?那就请四人小组共同计算吧!老师让每个同学都准备了直角三角形、锐角三角形和钝角三角形三种不同的三角形,并量出了每个内角的度数,下面就请同学们在小组内每种各选一个求出它们的内角和,把结果填在表中:(3)小组汇报结果。请各小组汇报探究结果提问:你们发现了什么?小结:通过测量计算我们发现每个三角形的三个内角和都在180°左右。3、继续探究(1)动手操作,验证猜测。没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?请同学们动脑筋想一想,能通过动手操作来验证吗?(先小组讨论,再汇报方法)大家的办法都很好,请你们小组合作,动手操作。(2)学生操作,教师巡视指导。(3)全班交流汇报验证方法、结果。学生放在投影仪上展示给大家看。(剪拼、撕拼、折拼)我们可以得出一个怎样的结论?(三角形的内角和是180°)引导学生通过剪拼、撕拼和折拼的方法发现:各类三角形的三个内角都可以拼成一个平角,使学生证实三角形内角和确实是180°,测量计算有误差。4、辨析概念,透彻理解。(出示一个大三角形)它的内角和是多少度?(出示一个很小的三角形)它的内角和是多少度?一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?(学生有的答360°,有的180°。)把大三角形平均分成两份。每个小三角形的内角和是多少度?(生有的答90°,有的180°。)这两道题都有两种答案,到底哪个对?为什么?(学生个个脸上露出疑问。)大家可以在小组内用三角尺拼一拼,也可以画一画,互相讨论。经过一翻激烈的讨论探究后,学生发现:三角形不论位置、大小、形状如何,它的内角和总是180°(三)小结刚才同学们用很多方法证明了无论是什么样的三角形内角和都是180°,现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。(四)、巩固练习,拓展应用下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)1、求三角形中一个未知角的度数。(1)在三角形中,已知1=85°,2=65°,求3.(2)在三角形中,已知1=98°,2=49°,求3.2、判断(1)一个三角形的三个内角度数是:90°、75°、25°。()(2)一个三角形至少有两个角是锐角。()(3)钝角三角形的内角和比锐角三角形的内角和大。()(4)直角三角形的两个锐角和等于90°。()3、解决生活实际问题。(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?(2)交通警示牌“让”为等边三角形,求其中一个角的度数。4、拓展练习。利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)小组的同学讨论一下,看谁能找到最佳方法。学生汇报,在图中画上虚线,教师课件演示。请同学们自己在练习本上计算。(四)、课堂总结通过这节课的学习,你有哪些收获?中考数学知识点教案【篇2】知识技能目标1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;2、利用反比例函数的图象解决有关问题。过程性目标1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。教学过程一、创设情境上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k0)的图象,探究它有什么性质。二、探究归纳1、画出函数的图象。分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x0。解1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(6,1)、(3,2)、(2,3)等。3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。上述图象,通常称为双曲线(hyperbola)。提问这两条曲线会与x轴、y轴相交吗?为什么?学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。学生讨论、交流以下问题,并将讨论、交流的结果回答问题。1、这个函数的图象在哪两个象限?和函数的图象有什么不同?2、反比例函数(k0)的图象在哪两个象限内?由什么确定?3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?反比例函数有下列性质:(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。注1、双曲线的两个分支与x轴和y轴没有交点;2、双曲线的两个分支关于原点成中心对称。以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。三、实践应用例1若反比例函数的图象在第二、四象限,求m的值。分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。解由题意,得解得。例2已知反比例函数(k0),当x>0时,y随x的增大而增大,求一次函数y=kxk的图象经过的象限。分析由于反比例函数(k0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kxk中,k<0,可知,图象过二、四象限,又k>0,所以直线与y轴的交点在x轴的上方。解因为反比例函数(k0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kxk的图象经过一、二、四象限。例3已知反比例函数的图象过点(1,2)。(1)求这个函数的解析式,并画出图象;(2)若点A(5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?分析(1)反比例函数的图象过点(1,2),即当x=1时,y=2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。解(1)设:反比例函数的解析式为:(k0)。而反比例函数的图象过点(1,2),即当x=1时,y=2.所以,k=2.即反比例函数的解析式为:。(2)点A(5,m)在反比例函数图象上,所以,点A的坐标为。点A关于x轴的对称点不在这个图象上;点A关于y轴的对称点不在这个图象上;点A关于原点的对称点在这个图象上;例4已知函数为反比例函数。(1)求m的值;(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?(3)当3x时,求此函数的最大值和最小值。解(1)由反比例函数的定义可知:解得,m=2.(2)因为2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。(3)因为在第个象限内,y随x的增大而增大,所以当x=时,y最大值=;当x=3时,y最小值=。所以当3x时,此函数的最大值为8,最小值为。例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。(1)写出用高表示长的函数关系式;(2)写出自变量x的取值范围;(3)画出函数的图象。解(1)因为100=5xy,所以。(2)x>0。(3)图象如下:说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。四、交流反思本节课学习了画反比例函数的图象和探讨了反比例函数的性质。1、反比例函数的图象是双曲线(hyperbola)。2、反比例函数有如下性质:(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。五、检测反馈1、在同一直角坐标系中画出下列函数的图象:(1);(2)。2、已知y是x的反比例函数,且当x=3时,y=8,求:(1)y和x的函数关系式;(2)当时,y的值;(3)当x取何值时,?3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。4、已知反比例函数经过点A(2,m)和B(n,2n),求:(1)m和n的值;(2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0<x2,试比较y1和y2的大小。<p="">中考数学知识点教案【篇3】教学目标1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;2.通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;3.通过加法运算练习,培养学生的运算能力。教学建议(一)重点、难点分析本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算.由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.(二)知识结构(三)教法建议1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.2.关于“去括号法则”,只要学生了解,并不要求追究所以然.3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。4.先把正数与负数分别相加,可以使运算简便。5.在交换加数的位置时,要连同前面的符号一起交换。如12-5+7应变成12+7-5,而不能变成12-7+5.中考数学知识点教案【篇4】教学目标1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。教学难点正确分析实际问题中的不等关系,列出不等式组。知识重点建立不等式组解实际问题的数学模型。探究实际问题出示教科书第145页例2(略)问:(1)你是怎样理解“不能完成任务”的数量含义的?(2)你是怎样理解“提前完成任务”的数量含义的?(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?师生一起讨论解决例2.归纳小结1、教科书146页“归纳”(略).2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?在讨论或议论的基础上老师揭示:步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。中考数学知识点教案【篇5】一、素质教育目标(一)知识教学点1.了解:代数和的概念.2.理解:有理数加减法可以互相转化.3.应用:会进行加减混合运算.(二)能力训练点培养学生的口头表达能力及计算的准确能力.(三)德育渗透点通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想.(四)美育渗透点学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美.二、学法引导1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题.中考数学知识点教案【篇6】教学内容:在学生初步了解,年月日、季度的概念后,寻找历法与扑克之间的关系。教学目标:1、通过对"扑克"有趣的研究,培养起学生对生活中平常小事的关注。2、调动学生丰富的联想,养成一种思考的习惯。教学重难点:"扑克"与年月日、季度的联系。教学过程:一、谈话引入师:同学们,这个你们一定见过吧!这是我们生活中比较常见的"扑克"。谁愿意告诉我们,你对扑克的了解呢?生:.(教师补充,引发学生的好奇心。)师:"扑克"还有一种作用,而且与数学有关!生:.二、新课1、桃、心、梅、方4种花色可以代表一年四季春、夏、秋、冬2、大王=太阳小王=月亮红=白天黑=夜晚3、A=12=23=34=45=56=67=78=89=910=10J=11Q=12K=13大王=1小王=14、所有牌的和+小王=平年的天数所有牌的和+小王+大王=闰年的天数5、扑克中的K、Q、J共有12张,3×4=12,表示一年有12个月6、365÷752一年有52个星期。54张牌中除去大王、小王有52张是正牌,表示一年有52个星期。7、一种花色的和=一个季度的天数一种花色有13张牌=一个季度有13个星期三、小结生活中有很多的数学,他每时每刻都在我们的身边出现,只是我们大家没有注意到。请大家都要学会留心观察,做生活的有心人。2.学生写法:练习寻找简单的一般性的方法练习巩固.三、重点、难点、疑点及解决办法1.重点:把加减混合运算算式理解为加法算式.2.难点:把省略括号和的形式直接按有理数加法进行计算.四、课时安排1课时五、教具学具准备投影仪或电脑、自制胶片.六、师生互动活动设计教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈.七、教学步骤(一)创设情境,复习引入师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:-9+(+6);(-11)-7.师:(1)读出这两个算式.(2)“+、-”读作什么?是哪种符号?“+、-”又读作什么?是什么符号?学生活动:口答教师提出的问题.师继续提问:(1)这两个题目运算结果是多少?(2)(-11)-7这题你根据什么运算法则计算的?学生活动:口答以上两题(教师订正).师小结:减法往往通过转化成加法后来运算.【教法说明】为了进行有理数的加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作.师:把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算.(板书课题2.7有理数的加减混合运算(1)教学说明:由复习的题目巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目组成.(1)省略括号和的形式师:看到这个题你想怎样做?学生活动:自己在练习本上计算.教师针对学生所做的方法区别优劣.【教法说明】题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展示自己的机会,这时,有的学生可能是按从左到右的顺序运算,有的同学可能是先把减法都转化成了加法,然后按加法的计算法则再计算?这样在不同的方法中,学生自己就会寻找到简单的、一般性的方法.师:我们对此类题目经常采用先把减法转化为加法,这时就成了-9,+6,+11,-7的和,加号通常可以省略,括号也可以省略,即:原式=(-9)+(+6)+(+11)+(-7)=-9+6+11-7.提出问题:虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成?学生活动:先自己练习尝试用两种读法读,口答(教师纠正).【教法说明】教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力.巩固练习:(出示投影1)1.把下列算式写成省略括号和的形式,并把结果用两种读法读出来.(1)(+9)-(+10)+(-2)-(-8)+3;(2)+()-()-().2.判断式子-7+1-5-9的正确读法是().A.负7、正1、负5、负9;B.减7、加1、减5、减9;C.负7、加1、负5、减9;D.负7、加1、减5、减9;学生活动:1题两个学生板演,两个学生用两种读法读出结果,其他同学自行演练,然后同桌读出互相纠正,2题抢答.【教法说明】这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法.2.用加法运算律计算出结果师:既然算式能看成几个数的和,我们可以运用加法的运算律进行计算,通常同号两数放在一起分别相加.-9+6+11-7=-9-7+6+11.学生活动:按教师要求口答并读出结果.巩固练习:(出示投影2)填空:1.-4+7-4=-_-_+_2.+6+9-15+3=_+_+_-_3.-9-3+2-4=_9_3_4_24._学生活动:讨论后回答.【教法说明】学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点.师:-9-7+6+11怎样计算?学生活动:口答板书-9-7+6+11=-16+17=1巩固练习:(出示投影3)1.计算(1)-1+2-3-4+5;(2).2.做完前面两个题目计算:(1)(+9)-(+10)+(-2)-(-8)+3;(2).学生活动:四个同学板演,其他同学在练习本上做.【教法说明】针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中.师小结:有理数加减法混合运算的题目的步骤为:1.减法转化成加法;2.省略加号括号;3.运用加法交换律使同号两数分别相加;4.按有理数加法法则计算.(三)反馈练习(出示投影4)计算:(1)12-(-18)+(-7)-15;(2).学生活动:可采用同桌互相测验的方法,以达到纠正错误的目的.【教法说明】这两个题目是本节课的重点.采用测验的方式来达到及时反馈.(四)归纳小结师:1.怎样做加减混合运算题目?2.省略括号和的形式的两种读法?学生活动:口答.【教法说明】小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统.八、随堂练习1.把下列各式写成省略括号的和的形式(1)(-5)+(+7)-(-3)-(+1);(2)10+(-8)-(+18)-(-5)+(+6).2.说出式子-3+5-6+1的两种读法.3.计算(1)0-10-(-8)+(-2);(2)-4.5+1.8-6.5+3-4;(3).九、布置作业(一)必做题:1.计算:(1)-8+12-16-23;(2);(3)-40-28-(-19)+(-24)-(-32);(4)-2.7+(-3.2)-(1.8)-2.2;(二)选做题:(1)当时,哪个最大,哪个最小?(2)当时,哪个最大,哪个最小?十、板书设计中考数学知识点教案【篇7】本学期是初中学习的关键时期,进入初三,学生成绩差距较大、教学任务非常艰巨、因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点、努力把今学期的任务圆满完成、本着为了学生的一切为宗旨,把培养高素质人才作为目标,特制定本计划、一、完成九年级下册的内容1、完成本学期的教学任务、2、加强学生对数学知识的认识方法,培养他们正确的学习方法、3、通过关於图形和证明的教学,进一步培学生的逻辑思维能力与空间观念、二、本学期在提高教学质量上采取的措施1、中考复习前,认真研读中考说明,理解本学科考试水平要求层次的内涵,与新课程标准相联系,以总复习书为依据,制定复习计划、注重知识的应用性、探究性、综合性、教育性和时代性、复习指导的实施要充分体现课标精神和课改方向、2、研究近几年中考数学命题的走向,研究中考复习策略、平时考试中,以模拟中考命题,试题来源注重信息的收集和新题型的探索,着重考查学生基本的数学思想和方法、力争每周一个知识点,周末检测、每次测完后及时批阅,争取放假前发到学生手中,便于学生及时做总结(学生将错题改在作业本上),周一师生共同检查总结效果、教师要清楚每一个学生的学习成绩层次,细致地分层教学,利用成绩追踪档案,加强对边缘生和学困生的辅导工作、3、要重视解题后的反思,要把知识归类、方法归类、每个知识点的复习要以题代点,课堂上选取的例题力争体现本节课复习要点,特别是概念性的练习要练透练全,避免混淆、注意知识间的渗透,以点牵线,以线成面,帮助学生构建完整的知识体系、4、复习阶段的每节课容量都很大,难免会出现个别学生思想上的波动,这就要求我们教师注意他们的动向,多鼓励,多关注,培养他们的积极性、除了以上计划外,我还将预计开展转化个别后进生工作,教学中注重数学理论与社会实践的联系,鼓励学生多观察、多思考实际生活中蕴藏的数学问题,逐步培养学生运用书本知识解决实际问题的能力,重视实习作业,另外,以20_年中考研讨会和相关信息为依据,带领初三全体学生密切关注中考动向,为迎接中考作好充分的准备、教学中更多细节方面的内容还有待于在具体的工作中进一步探索、补充和完善、面对同学们的进步,我深感责任更加重大,为了提升成绩,为了不负重望,为了给自己、学生和学校一个满意的答案,我一定在取得原有的经验上,不断努力学习、努力工作、努力的探索,坚持到底!