最全的递推数列求通项公式方法(完整版)实用资料.doc
最全的递推数列求通项公式方法(完整版)实用资料(可以直接使用,可编辑 完整版实用资料,欢迎下载)高考递推数列题型分类归纳解析 各种数列问题在很多情形下,就是对数列通项公式的求解。特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。本文总结出几种求解数列通项公式的方法,希望能对大家有帮助。类型1 解法:把原递推公式转化为,利用累加法(逐差相加法)求解。例:已知数列满足,求。解:由条件知:分别令,代入上式得个等式累加之,即所以,变式:(2004,全国I,个理22本小题满分14分)已知数列,且a2k=a2k1+(1)k, a2k+1=a2k+3k, 其中k=1,2,3,.(I)求a3, a5;(II)求 an的通项公式.解:,即, 将以上k个式子相加,得将代入,得,。经检验也适合,类型2 解法:把原递推公式转化为,利用累乘法(逐商相乘法)求解。例:已知数列满足,求。解:由条件知,分别令,代入上式得个等式累乘之,即又,例:已知, ,求。解: 。变式:(2004,全国I,理15)已知数列an,满足a1=1, (n2),则an的通项 解:由已知,得,用此式减去已知式,得当时,即,又,将以上n个式子相乘,得类型3 (其中p,q均为常数,)。解法(待定系数法):把原递推公式转化为:,其中,再利用换元法转化为等比数列求解。例:已知数列中,求.解:设递推公式可以转化为即.故递推公式为,令,则,且.所以是以为首项,2为公比的等比数列,则,所以.变式:(2006,重庆,文,14)在数列中,若,则该数列的通项_(key:)变式:(2006. 福建.理22.本小题满分14分)已知数列满足(I)求数列的通项公式;(II)若数列bn滿足证明:数列bn是等差数列;()证明:(I)解:是以为首项,2为公比的等比数列 即(II)证法一:,得即,得即是等差数列 证法二:同证法一,得令得设下面用数学归纳法证明(1)当时,等式成立 (2)假设当时,那么这就是说,当时,等式也成立 根据(1)和(2),可知对任何都成立 是等差数列 (III)证明:变式:递推式:。解法:只需构造数列,消去带来的差异类型4 (其中p,q均为常数,)。 (或,其中p,q, r均为常数) 。解法:一般地,要先在原递推公式两边同除以,得:引入辅助数列(其中),得:再待定系数法解决。例:已知数列中,,,求。解:在两边乘以得:令,则,解之得:所以变式:(2006,全国I,理22,本小题满分12分)设数列的前项的和,()求首项与通项;()设,证明:解:(I)当时,;当时,即,利用(其中p,q均为常数,)。 (或,其中p,q, r均为常数)的方法,解之得:()将代入得 Sn= ×(4n2n)×2n+1 + = ×(2n+11)(2n+12) = ×(2n+11)(2n1) Tn= = × = ×( )所以, = ) = ×( ) < 类型5 递推公式为(其中p,q均为常数)。解法一(待定系数法):先把原递推公式转化为其中s,t满足解法二(特征根法):对于由递推公式,给出的数列,方程,叫做数列的特征方程。若是特征方程的两个根,当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组);当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组)。解法一(待定系数迭加法):数列:, ,求数列的通项公式。由,得,且。则数列是以为首项,为公比的等比数列,于是。把代入,得,。把以上各式相加,得。解法二(特征根法):数列:, 的特征方程是:。,。又由,于是故例:已知数列中,,,求。解:由可转化为即或这里不妨选用(当然也可选用,大家可以试一试),则是以首项为,公比为的等比数列,所以,应用类型1的方法,分别令,代入上式得个等式累加之,即又,所以。变式:(2006,福建,文,22,本小题满分14分)已知数列满足(I)证明:数列是等比数列;(II)求数列的通项公式;(III)若数列满足证明是等差数列 (I)证明:是以为首项,2为公比的等比数列 (II)解:由(I)得(III)证明:,得即,得即是等差数列 类型6 递推公式为与的关系式。(或)解法:这种类型一般利用与消去 或与消去进行求解。例:已知数列前n项和.(1)求与的关系;(2)求通项公式.解:(1)由得:于是所以.(2)应用类型4(其中p,q均为常数,)的方法,上式两边同乘以得:由.于是数列是以2为首项,2为公差的等差数列,所以变式:(2006,陕西,理,20本小题满分12分) 已知正项数列an,其前n项和Sn满足10Sn=an2+5an+6且a1,a3,a15成等比数列,求数列an的通项an 解: 10Sn=an2+5an+6, 10a1=a12+5a1+6,解之得a1=2或a1=3 又10Sn1=an12+5an1+6(n2), 由得 10an=(an2an12)+6(anan1),即(an+an1)(anan15)=0 an+an1>0 , anan1=5 (n2) 当a1=3时,a3=13,a15=73 a1, a3,a15不成等比数列a13;当a1=2时, a3=12, a15=72, 有 a32=a1a15 , a1=2, an=5n3 变式: (2005,江西,文,22本小题满分14分)已知数列an的前n项和Sn满足SnSn2=3求数列an的通项公式.解:,两边同乘以,可得令 又,。类型7 解法:这种类型一般利用待定系数法构造等比数列,即令,与已知递推式比较,解出,从而转化为是公比为的等比数列。例:设数列:,求.解:设,将代入递推式,得()则,又,故代入()得说明:(1)若为的二次式,则可设;(2)本题也可由 ,()两式相减得转化为求之.变式:(2006,山东,文,22,本小题满分14分)已知数列中,在直线y=x上,其中n=1,2,3 ()令()求数列()设的前n项和,是否存在实数,使得数列为等差数列?若存在,试求出 若不存在,则说明理由 解:(I)由已知得 又是以为首项,以为公比的等比数列 (II)由(I)知,将以上各式相加得: (III)解法一:存在,使数列是等差数列 数列是等差数列的充要条件是、是常数即又当且仅当,即时,数列为等差数列 解法二:存在,使数列是等差数列 由(I)、(II)知,又当且仅当时,数列是等差数列 类型8 解法:这种类型一般是等式两边取对数后转化为,再利用待定系数法求解。例:已知数列中,求数列解:由两边取对数得,令,则,再利用待定系数法解得:。变式:(2005,江西,理,21本小题满分12分)已知数列(1)证明(2)求数列的通项公式an.解:用数学归纳法并结合函数的单调性证明:(1)方法一 用数学归纳法证明:1°当n=1时, ,命题正确.2°假设n=k时有 则 而又时命题正确.由1°、2°知,对一切nN时有方法二:用数学归纳法证明:1°当n=1时,; 2°假设n=k时有成立, 令,在0,2上单调递增,所以由假设有:即也即当n=k+1时 成立,所以对一切 (2)解法一:所以,又bn=1,所以解法二:由(I)知,两边取以2为底的对数,令,则或变式:(2006,山东,理,22,本小题满分14分)已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中=1,2,3,(1) 证明数列lg(1+an)是等比数列;(2) 设Tn=(1+a1) (1+a2) (1+an),求Tn及数列an的通项;记bn=,求bn数列的前项和Sn,并证明Sn+=1 解:()由已知,两边取对数得,即是公比为2的等比数列 ()由()知 (*)=由(*)式得(), ,又,又, 类型9 解法:这种类型一般是等式两边取倒数后换元转化为。例:已知数列an满足:,求数列an的通项公式。解:取倒数:是等差数列,变式:(2006,江西,理,22,本大题满分14分)已知数列an满足:a1,且an(1) 求数列an的通项公式;(2) 证明:对于一切正整数n,不等式a1·a2·an<2·n!解:(1)将条件变为:1,因此1为一个等比数列,其首项为1,公比,从而1,据此得an(n³1)1°(2)证:据1°得,a1·a2·an为证a1·a2·an<2·n!只要证nÎN*时有>2°显然,左端每个因式都是正数,先证明,对每个nÎN*,有³1()3°用数学归纳法证明3°式:(i) n1时,3°式显然成立,(ii) 设nk时,3°式成立,即³1()则当nk1时,³1()·()1()()³1()即当nk1时,3°式也成立 故对一切nÎN*,3°式都成立 利用3°得,³1()11>故2°式成立,从而结论成立 类型10 解法:如果数列满足下列条件:已知的值且对于,都有(其中p、q、r、h均为常数,且),那么,可作特征方程,当特征方程有且仅有一根时,则是等差数列;当特征方程有两个相异的根、时,则是等比数列。例:已知数列满足性质:对于且求的通项公式. 解: 数列的特征方程为变形得其根为故特征方程有两个相异的根,使用定理2的第(2)部分,则有即例:已知数列满足:对于都有(1)若求(2)若求(3)若求(4)当取哪些值时,无穷数列不存在?解:作特征方程变形得特征方程有两个相同的特征根依定理2的第(1)部分解答.(1)对于都有(2) 令,得.故数列从第5项开始都不存在,当4,时,.(3)令则对于(4)、显然当时,数列从第2项开始便不存在.由本题的第(1)小题的解答过程知,时,数列是存在的,当时,则有令则得且2.当(其中且N2)时,数列从第项开始便不存在.于是知:当在集合或且2上取值时,无穷数列都不存在.变式:(2005,重庆,文,22,本小题满分12分)数列记()求b1、b2、b3、b4的值;()求数列的通项公式及数列的前n项和解法一:由已知,得,其特征方程为解之得,或, 解法二:(I)(II)因,故猜想因,(否则将代入递推公式会导致矛盾)故的等比数列., 解法三:()由整理得()由所以解法四:()同解法一() 从而类型11 或解法:这种类型一般可转化为与是等差或等比数列求解。例:(I)在数列中,求 (II)在数列中,求类型12 归纳猜想法解法:数学归纳法变式:(2006,全国II,理,22,本小题满分12分)设数列an的前n项和为Sn,且方程x2anxan0有一根为Sn1,n1,2,3,()求a1,a2;()an的通项公式 提示:1 为方程的根,代入方程可得将n=1和n=2代入上式可得 2 求出等,可猜想并用数学归纳法进行证明,本题主要考察 一般数列的通项公式与求和公式间的关系3 方程的根的意义(根代入方程成立)4数学归纳法证明数列的通项公式(也可以把分开为,可得解:()当n1时,x2a1xa10有一根为S11a11,于是(a11)2a1(a11)a10,解得a1 当n2时,x2a2xa20有一根为S21a2,于是(a2)2a2(a2)a20,解得a1 ()由题设(Sn1)2an(Sn1)an0,即Sn22Sn1anSn0 当n2时,anSnSn1,代入上式得Sn1Sn2Sn10由()知S1a1,S2a1a2 由可得S3 由此猜想Sn,n1,2,3, 8分下面用数学归纳法证明这个结论 (i)n1时已知结论成立 (ii)假设nk时结论成立,即Sk,当nk1时,由得Sk1,即Sk1,故nk1时结论也成立 综上,由(i)、(ii)可知Sn对所有正整数n都成立 10分于是当n2时,anSnSn1,又n1时,a1,所以an的通项公式an,n1,2,3, 12分本题难度较大,不过计算较易,数列的前面一些项的关系也比较容易发现 类型13双数列型解法:根据所给两个数列递推公式的关系,灵活采用累加、累乘、化归等方法求解。例:已知数列中,;数列中,。当时,,,求,.解:因所以即(1)又因为所以.即(2)由(1)、(2)得:, 类型14周期型解法:由递推式计算出前几项,寻找周期。例:若数列满足,若,则的值为_。变式:(2005,湖南,文,5)已知数列满足,则=( )A0BCD