开关电源的电磁兼容性设计(完整版)实用资料.doc
-
资源ID:91793410
资源大小:902.04KB
全文页数:24页
- 资源格式: DOC
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
开关电源的电磁兼容性设计(完整版)实用资料.doc
开关电源的电磁兼容性设计(完整版)实用资料(可以直接使用,可编辑 完整版实用资料,欢迎下载)开关电源的电磁兼容性设计摘要:系统地分析了开关电源产生噪声的主要原因及产生噪声的回路和部件,给出了相应的抗干扰措施,从而提高了形状电源的电磁兼容性。开关电源不需要沉重的电源变压器,具有体积小、重量轻、效率高的优点,且市场上已有成品开关电源集成控制模块,使电源设计、调试简化许多,所以,在大多数的电子设备(如计算机、电视机及各种控制系统)中得到了广泛的应用。然而,开关电源自身产生的各种噪声却形成了一个很强的电磁干扰源。这些干扰随着开关频率的提高、输出功率的增大而明显地增强,对电子设备的正常运行构成了潜在的威胁。因此,只有提高开关电源的电磁兼容性,才能使开关电源在那些对电源噪声指标有严格要求的场下被采用。1. 开关电源产生噪声的原因开关电源的种类很多,按变换器的电路结构可分为串行联式和直流变换式两种;按激励方式可分为自激和它激两种;按开关管的组合可分为桥式、半桥式、推换式等。但无论体积类型的开关电源都是利用半导体器件的开和关工作的,并以开和关的时间比来控制输出电压的高低。由于它通常在20kHz以上的开关频率下工作,所以电源线路内的dv/dt、di/dt很大,产生很大的浪涌电压、浪涌电流和其它各种噪声。它们通过电源线以共模或差模方式向外传导,同时还向周围空间辐射噪声。图1给出了一种典型的开关电源电路的简图,下面以此为例分析其产生噪声的主要原因。1.1 一次整流回路的噪声在一次整流回路中,整流二极管D1D4只有在脉动电压超过C1的充电电压的瞬间,电流才从电源输入侧流入。所以,一次整流回路产生高次畸变波,形成噪声。1.2 开关回路的噪声一是电磁辐射。电源在工作时,开关管T处于高频率通断状态,在由脉冲变压器初级线圈L1、开关管T和滤波器C1构成的高频电流环路中,可能会产生较大的空间辐射噪声。如果C1的滤波不足,则高频电流还会以差模方式传导到交流电源中去。二是感性负载引起的浪涌电压。在开关回路中开关管T的负载是脉冲变压器的初级线圈L1,是感性负载,所以开关管高的浪涌电压,很可很造成与此同一回路的电子器件(尤其是开关管T)的损坏。1.3 二次整流回路的噪声一是电磁辐射。电源在工作时,整流二极D5也处于高频通断状态,由脉冲变压器次级线圈L2、整流二极管D5和滤波电容C2构成了高频开关电流环路,电流将以差模形式混在输出直流电压上,影响负载电路的正常工作。二是浪涌电流。硅二极管在正向导通时PN结内的电荷被积累,二极管加反向电压时积累的电荷将消失并产生反向电流。由于二次整流回路中D5在开关转换时频率很高,即由导通转变为截止的时间很短。在短时间内要让存储电荷消失就产生反电流的浪涌。由于直流输出线路中的分布电容、分布电感的存在,使因浪涌引起的干扰成为高频衰减振荡。1.4 控制回路的噪声控制回路中的脉冲控制信号是主要的噪声源。1.5 分布电容引起的噪声一是Ci的作用。散热片K与开关管T的集电极间虽然有绝缘垫片,但由于其接触面较大,绝缘垫较薄,因此两者之间的分布电容Ci在高频时不能忽略。因此高频电容会通过Ci流到散热片上,再流到机壳地,最终流到与机壳地相连的交流电源的保护地线PE中,以产生共模辐射。二是Cd的作用。脉冲变压器的初、次级之间存在的分布电容Cd,可能会将原边高频电压直接耦合到副边上去,在副边用作直流输出的两条电源线上产生同相位的共模噪声。2 开关电源的电磁兼容性设计抑制开关电源的噪声可采取三方面的技术。一是减小干扰源的干扰能量;二是破坏干扰路径;三是采用屏蔽。2.1 减小干扰源能量由于开关电源的干扰源是不可能消除的,所以减小干扰源的能量不显得非常必要。一般采取的措施有:(1)并接RC电路。在开关管T两端加RC吸收电路,如图2(a)所示。在二次整流回路中的整流二极管D5两端加RC吸收电路,如图2(b)所示,抑制浪涌电压。(2)串接可饱和磁芯线圈。在二次整流回路中,与整流二极管D6串接带可饱和磁芯的线圈,如炉图2(b)所示。可饱和磁芯线圈在通过正常电流时磁芯饱和,电感量很小,不会影响电路正常工作;一旦电流要反向流过时,磁芯线圈将产生很大的反电势,阻止反向电流的上升,因此将它与二极管D6串联就能有效地抑制二极管D5的反向浪涌电流。目前已有超小型非晶型磁环成品,可以直接套在二极管的正极引线上,使用方便。2.2 破坏干扰路径一是针对开磁电源中分布电容引起的电场噪声采取措施。主要抗干扰措施有:(1)减少开磁管集电极和散热片之间的耦合电容Ci。选用低介电常数的材料作绝缘垫,加厚垫片的厚度,并采用静电屏蔽的方法,如图3所示。一般开关管的外壳是集电极,在集电极和散热片之间垫上一层夹心绝缘物,即绝缘物中间夹一层铜箔,作为静电屏蔽层,接在输入直流0V地上,散热片仍接在机壳地上,这样钭大大减少集电极与散热片之间的耦合电容Ci,也就减少了它们之间的电场耦合。图3(a)是减少Ci的原理图,屏蔽层将Ci分成Ci1和Ci2的串联形式,图3(b)是实物图。(2)减少脉冲变压器的分布电容Cd。在一痤侧和二次侧间加静电屏蔽层,屏蔽层应尽量靠近发射极并接地,这样将耦合电容Cd也分成Cd1和Cd2的串联形式,如图4所示,减少了一、二次侧的电场的耦合干扰。二是针对开关电源通过电源线向外传输噪声的特点采取措施,即采用滤波技术破坏干扰。采用的滤波技术有:(1)交流侧流滤波。开关电源的交流电源线输入端插入共模和差模滤波器,防止开关电源的共模和差模噪声传递到电源线中,影响电网中其它用电设备,同时也抑制来自电网的噪声。交流侧滤波器如图5(a)所示,其中LD、CD用于抑制差模噪声,一般ID取100700H,CD取110F,对抑制10150kHz的噪声比较有效。Ic/Cc抑制共模噪声,一般Lc取13mH,Cc取20006800pF,对抑制150kHz以上的共模噪声有效。对于具体的开关电路要对其上述元件的参数进行调试确定。(2)直流侧滤波。在开磁电源的直流输出侧插入如图5(b)所示的电源滤波器,它由共模扼流圈L1、L2,扼流圈L3和电容C1、C2组成。为了防止磁芯在较大的磁场强度下饱和而使扼流圈失去作用,扼流圈的磁芯必须采用高频特性好且饱和磁场强度大的恒磁芯。2.3 屏蔽抑制辐射噪声的有效方法是蔽。用导电良好的材料对电场屏蔽,用导磁率高的材料对磁场屏蔽。为了防止脉冲变压器的磁场泄露,可利用闭合磁环形成磁屏蔽,对整个开关电流要进行屏蔽。在屏蔽的应考虑散热和通风问题,屏蔽盒上的通风孔最好为圆形,接缝处最好焊接,以保证电磁的连续性。开关电源的电磁兼容性设计考虑的因素还很多,如印制板的制作、元器件的布局以及各种电源线、信号线的捆扎、配置等,有许多工作要做。全面抑制开关电源的各种噪声会大大提高开关电源的电磁兼容性,使开关电源得到更广泛的应用。开关电源功率变压器的设计方法1开关电源功率变压器的特性 功率变压器是开关电源中非常重要的部件,它和普通电源变压器一样也是通过磁耦合来传输能量的。不过在这种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁心或铍莫合金等磁性材料,其目的是为了获得较大的励磁电感、减小磁路中的功率损耗,使之能以最小的损耗和相位失真传输具有宽频带的脉冲能量。 图1(a)为加在脉冲变压器输入端的矩形脉冲波,图1(b)为输出端得到的输出波形,可以看出脉冲变压器带来的波形失真主要有以下几个方面:图1脉冲变压器输入、输出波形(a)输入波形(b)输出波形(1)上升沿和下降沿变得倾斜,即存在上升时间和下降时间;(2)上升过程的末了时刻,有上冲,甚至出现振荡现象;(3)下降过程的末了时刻,有下冲,也可能出现振荡波形;(4)平顶部分是逐渐降落的。这些失真反映了实际脉冲变压器和理想变压器的差别,考虑到各种因素对波形的影响,可以得到如图2所示的脉冲变压器等效电路。图中:Rsi信号源Ui的内阻Rp一次绕组的电阻Rm磁心损耗(对铁氧体磁心,可以忽略)T理想变压器Rso二次绕组的电阻RL负载电阻C1、C2一次和二次绕组的等效分布电容Lin、Lis一次和二次绕组的漏感Lm1一次绕组电感,也叫励磁电感n理想变压器的匝数比,n=N1/N2图2脉冲变压器的等效电路 将图2所示电路的二次回路折合到一次,做近似处理,合并某些参数,可得图3所示电路,漏感Li包括Lin和Lis,总分布电容C包括C1和C2;总电阻RS包括Rsi、RP和Rso;Lm1是励磁电感,和前述的Lm1相同;RL是RL等效到一次侧的阻值,RL=RL/n2,折合后的输出电压Uo=Uo/n。 经过这样处理后,等效电路中只有5个元件,但在脉冲作用的各段时间内,每个元件并不都是同时起主要作用,我们知道任何一个脉冲波形可以分解成基波与许多谐波的叠加。脉冲的上升沿和下降沿包含着各种高频分量,而脉冲的平顶部分包含着各种低频分量。因此在上升、下降和平顶过程中,各元件(L、C等)表现出来的阻抗也不一样,因此我们把这一过程分成几个阶段来分析,分别找出各阶段起主要作用的元件,而忽略次要的因素。例如,当输入信号为矩形脉冲时,可以分3个阶段来分析,即上升阶段、平顶阶段和下降阶段。(1)上升阶段对于通常的正脉冲而言,上升阶段即脉冲前沿,信号中包含丰富的高频成分,当高频分量通过脉冲变压器时,在图3所示的等效电路中,C的容抗1/C很小,而Lm1的感抗Lm1很大,相比起来,可将Lm1的作用忽略,而在串联的支路中,Li的作用即较为显著。于是可以把图3所示的等效电路简化成图4所示的等效电路。 图3图2的等效电路 图4图3的简化电路在这个电路中,频率越高,Li越大,而1/C越小,因而高频信号大多降在Li上,输出的高频分量就减少了,可见输入信号Usm前沿中所包含的高频分量就不能完全传输到输出端,频率越高的成分到达输出端越小,结果在输出端得到的波形前沿就和输入波形不同,即产生了失真。要想减小这种波形失真,就要尽量减小分布电容C(应减小变压器一次绕组的匝数)。但又要得到一定的绕组电感量,所以需要用高磁导率的磁心。在绕制上也可以采取一些措施来减小分布电容,例如用分段绕法;为了减小漏感L1,可采用一、二次绕组交叠绕法等。(2)平顶阶段脉冲的平顶包含着各种低频分量。在低频情况下,并联在输出端的3个元件中,电容C的容抗1/C很大,因此电容C可以忽略。同时在串联支路中,Li的感抗Li很小,也可以略去。所以又可以把图3电路简化为图5所示的低频等效电路。信号源也可以等效成电动势为Usm的直流电源。这里可用下述公式表达Uo=(UsmRL)eT/(RsRL)=Lm1(RsRL)RsRL可见Uo为一下降的指数波形,其下降速度决定于时间常数,越大,下降越慢,即波形失真越小。为此,应尽量加大Lm1,而减小Rs和RL,但这是有限的。如果Lm1太大,必然使绕组的匝数很多,这将导致绕组分布电容加大,致使脉冲上升沿变坏。 图5图3的低频等效电路 图6脉冲下降阶段的等效电路(3)下降阶段 下降阶段的信号源相当于直流电源Usm串联的开关S由闭合到断开的阶段,它与上升阶段虽然是相对的过程,但有两个不同;一是电感Lm1中有励磁电流,并开始释放,因此Lm1不能略去;二是开关S断开后,Rs便不起作用,由此得出下降阶段的等效电路,见图6。 一般来说,在脉冲变压器平顶阶段以后,Lm1中存储了比较大的磁能,因此在开关断开后,会出现剧烈的振荡,并产生很大的下冲。为了消除下冲往往采用阻尼措施。2功率变压器的参数及公式2.1变压器的基本参数在磁路中,磁通集中的程度,称为磁通密度或磁感应强度,用B表示,单位是特斯拉(T),通常仍用高斯(GS)单位,1T=104GS。另一方面,产生磁通的磁力称为磁场强度,用符号H表示,单位是A/mH=0.4NI/li式中:N绕组匝数I电流强度li磁路长度磁性材料的磁滞回线表示磁性材料被完全磁化和完全去磁化这一过程的磁特性变化。图7为一典型的磁化曲线。由坐标0点到a点这段曲线称起始磁化曲线。曲线中的一些关键点是十分重要的,BS:饱和磁通密度,Br:剩磁,HC:矫顽磁力。当Br越接近于BS值时,磁滞曲线的形状越接近于矩形,见图8(a),同时矫顽磁力HC越大时,磁滞曲线越宽,这表明这种磁性材料的磁化特性越硬,表明这种材料为硬磁性材料。当Br和BS相差越大,矫顽磁力HC越小时,即磁滞曲线越瘦,表明这种材料为软磁性材料,脉冲变压器的磁心材料应选用软磁性材料,见图8(b)。 图7不带气隙的磁滞回线 图8硬/软磁性材料和磁滞回线(a)硬磁材料(b)软磁材料 如果在磁心中开一个气隙,将建立起一个有气隙的磁路,它会改变磁路的有效长度。因为空气隙的磁导率为1,所以有效磁路长度le为le=liilg式中:li磁性材料中的磁路长度lg空气隙的磁路长度i磁性材料的磁导率对一个给定安匝数,有空气隙磁心的磁通密度要比没有空气隙的磁通密度小。2.2设计变压器的基本公式为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T)Bm=(Up×104)/KfNpSc式中:Up变压器一次绕组上所加电压(V)f脉冲变压器工作频率(Hz)Np变压器一次绕组匝数(匝)Sc磁心有效截面积(cm2)K系数,对正弦波为4.44,对矩形波为4.0一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。变压器输出功率可由下式计算(单位:W)Po=1.16BmfjScSo×105式中:j导线电流密度(A/mm2)Sc磁心的有效截面积(cm2)So磁心的窗口面积(cm2)3对功率变压器的要求(1)漏感要小 图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。图9双极性功率变换器波形 功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。(2)避免瞬态饱和 一般工频电源变压器的工作磁通密度设计在BH曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。它衰减得很快,持续时间一般只有几个周期。对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,这是不允许的。所以一般在控制电路中都有软启动电路来解决这个问题。(3)要考虑温度影响 开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。在设计和选用磁心材料时,除了关心其饱和磁通密度、损耗等常规参数外,还要特别注意它的温度特性。一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40考虑,磁心温度可达6080,一般选择Bm=0.20.4T,即20004000GS。(4)合理进行结构设计从结构上看,有下列几个因素应当给予考虑:漏磁要小,减小绕组的漏感;便于绕制,引出线及变压器安装要方便,以利于生产和维护;便于散热。4磁心材料的选择软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点,而被广泛应用于开关电源中。软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列,锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体的组成部分是Fe2O3,NiO,ZnO等,主要用于1MHz以上的各种调感绕组、抗干扰磁珠、共用天线匹配器等。在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为高导磁率磁心,其材料牌号多为R4KR10K,即相对磁导率为400010000左右的铁氧体磁心,而用于主变压器、输出滤波器等多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。开关电源用铁氧体磁性材应满足以下要求:(1)具有较高的饱和磁通密度Bs和较低的剩余磁通密度Br磁通密度Bs的高低,对于变压器和绕制结果有一定影响。从理论上讲,Bs高,变压器的绕组匝数可以减小,铜损也随之减小。在实际应用中,开关电源高频变换器的电路形式很多,对于变压器而言,其工作形式可分为两大类:1)双极性。电路为半桥、全桥、推挽等。变压器一次绕组里正负半周励磁电流大小相等,方向相反,因此对于变压器磁心里的磁通变化,也是对称的上下移动,B的最大变化范围为B=2Bm,磁心中的直流分量基本抵消。2)单极性。电路为单端正激、单端反激等,变压器一次绕组在1个周期内加上1个单向的方波脉冲电压(单端反激式如此)。变压器磁心单向励磁,磁通密度在最大值Bm到剩余磁通密度Br之间变化,见图7,这时的B=BmBr,若减小Br,增大饱和磁通密度Bs,可以提高B,降低匝数,减小铜耗。(2)在高频下具有较低的功率损耗 铁氧体的功率损耗,不仅影响电源输出效率,同时会导致磁心发热,波形畸变等不良后果。 变压器的发热问题,在实际应用中极为普遍,它主要是由变压器的铜损和磁心损耗引起的。如果在设计变压器时,Bm选择过低,绕组匝数过多,就会导致绕组发热,并同时向磁心传输热量,使磁心发热。反之,若磁心发热为主体,也会导致绕组发热。 选择铁氧体材料时,要求功率损耗随温度的变化呈负温度系数关系。这是因为,假如磁心损耗为发热主体,使变压器温度上升,而温度上升又导致磁心损耗进一步增大,从而形成恶性循环,最终将使功率管和变压器及其他一些元件烧毁。因此国内外在研制功率铁氧体时,必须解决磁性材料本身功率损耗负温度系数问题,这也是电源用磁性材料的一个显著特点,日本TDK公司的PC40及国产的R2KB等材料均能满足这一要求。(3)适中的磁导率相对磁导率究竟选取多少合适呢?这要根据实际线路的开关频率来决定,一般相对磁导率为2000的材料,其适用频率在300kHz以下,有时也可以高些,但最高不能高于500kHz。对于高于这一频段的材料,应选择磁导率偏低一点的磁性材料,一般为1300左右。(4)较高的居里温度居里温度是表示磁性材料失去磁特性的温度,一般材料的居里温度在200以上,但是变压器的实际工作温度不应高于80,这是因为在100以上时,其饱和磁通密度Bs已跌至常温时的70。因此过高的工作温度会使磁心的饱和磁通密度跌落的更严重。再者,当高于100时,其功耗已经呈正温度系数,会导致恶性循环。对于R2KB2材料,其允许功耗对应的温度已经达到110,居里温度高达240,满足高温使用要求。5开关电源功率变压器的设计方法5.1双极性开关电源变压器的计算设计前应确定下列基本条件:电路形式,开关工作频率,变压器输入电压幅值,开关功率管最大导通时间,变压器输出电压电流,输出侧整流电路形式,对漏感及分布电容的要求,工作环境条件等。(1)确定磁心尺寸1)求变压器计算功率PtPt的大小取决于变压器输出功率及输出侧整流电路形式:全桥电路,桥式整流:Pt=(11/n)Po半桥电路,双半波整流:Pt=(1/n)Po推挽电路,双半波整流:Pt=(/n)Po式中:Po=UoIo,直流输出功率。Pt可在(22.8)Po范围内变化,Po及Pt均以瓦(W)为单位。n=N1/N2,变压匝数比。2)确定磁通密度BmBm与磁心的材料、结构形式及工作频率等因素有关,又要考虑温升及磁心不饱和等要求。对于铁氧体磁心多采用0.3T(特斯拉)左右。3)计算磁心面积乘积SpSp等于磁心截面积Sc(cm2)及窗口截面积So(cm2)的乘积,即Sp=ScSo=(Pt×104)/4BmfKwKj1.16(cm4)式中:Kw窗口占空系数,与导线粗细、绕制工艺及漏感和分布电容的要求等有关。一般低压电源变压器取Kw=0.20.4。Kj电流密度系数,与铁心形式、温升要求等有关。对于常用的E型磁心,当温升要求为25时,Kj=366;要求50时,Kj=534。环型磁心,当温升要求为25时,Kj=250;要求50时,Kj=365。由Sp值选择适用于或接近于Sp的磁性材料、结构形式和磁心规格。(2)计算绕组匝数1)一次绕组匝数:N1=(Up1ton×102)/2BmSc(匝)式中:Up1一次绕组输入电压幅值(V)ton一次绕组输入电压脉冲宽度(s)2)二次绕组匝数:N2=(Up2N1)/Up1(匝)Ni=(UpiN1)/Up1(匝)式中:Up2Upi二次绕组输出电压幅值(V)(3)选择绕组导线导线截面积Smi=Ii/j(mm2)式中:Ii各绕组电流有效值(A)j电流密度j=KjSp0.14×102(A/mm2)(4)损耗计算1)绕组铜损Pmi=Ii2Rai(W)式中:Rai各绕组交流电阻(),Ra=KrRd,Rd导线直流电阻,Kr趋表系数,Kr=(D/2)2/(D)·,D圆导线直径(mm),穿透深度(mm),圆铜导线=66.1/f0.5(f:电流频率,Hz)变压器为多绕组时,总铜损为Pm=Ii2Rai(W)2)磁心损耗Pc=PcoGc式中:Pco在工作频率及工作磁通密度情况下单位质量的磁心损耗(W/kg)Gc磁心质量(kg)3)变压器总损耗Pz=PmPc(W)(5)温升计算变压器由于损耗转变成热量,使变压器温度上升,其温升数值与变压器表面积ST有关ST=式中:Sp磁心面积乘积(cm4)KS表面积系数,E型磁心KS=41.3,环型磁心KS=50.95.2单极性开关电源变压器的计算设计前应确定下列基本条件:电路形式,工作频率,变换器输入最高和最低电压,输出电压电流,开关管最大导通时间,对漏感及分布电容的要求,工作环境条件等。(1)单端反激式计算1)变压器输入输出电压一次绕组输入电压幅值UP1=UiU1式中:Ui变换器输入直流电压(V)U1开关管及线路压降(V)二次绕组输出电压幅值UP2=U02U2UPi=U0iUi式中:U02U0i直流输出电压(V)U2Ui整流管及线路压降(V)2)一次绕组电感临界值(H)式中:n变压器匝数比n=tonUp1/toffUp2ton额定输入电压时开关管导通时间(s)toff开关管截止时间(s)T开关电源工作周期(s),T=1/f,f:工作频率(Hz)Po变压器输出直流功率(W)通常要求一次绕组实际电感Lp1Lmin3)确定工作磁通密度单端反激式变压器工作在单向脉冲状态,一般取饱和磁通密度值(Bs)的一半,即脉冲磁通密度增量Bm=BS/2(T)4)计算磁心面积乘积Sp=392Lp1Ip1D12/Bm(cm4)式中:Ip1一次绕组峰值电流Ip1=2Po/Up1minDmax(A)式中:Up1min变压器输入最低电压幅值(V)Dmax最大占空比,Dmax=tonmax/TD1一次绕组导线直径(mm),由一次绕组电流有效值I1确定,单向脉冲时I1=Ip1(ton/T)0.55)空气隙长度lg=0.4Lp1Ip12/Bm2SC(cm)6)绕组匝数计算一次绕组,有气隙时N1=Bmlg×104/0.4Ip1(匝)无气隙时(匝)式中:LC磁心磁路长度(cm)e磁心有效磁导率,由工作的磁通密度和直流磁场强度及磁性材料决定,查阅磁心规格得出。二次绕组N2=Up2(1Dmax)/Up1minDmaxN1Ni=Upi(1Dmax)/UpiminDmaxN1(2)单端正激式计算单端正激式电路工作的特点是一、二次绕组同时工作,另加去磁绕组,因此计算方法与双极性电路类似。1)二次绕组峰值电流等于直流输出电流,即IP2=I022)二次绕组电压幅值开关电源功率变压器的设计方法Up2=(Uo2U2)/D(V)式中:Uo2输出直流电压(V)U2整流管及线路压降(V)D额定工作状态时的占空比D=ton/T3)变压器输出功率P2=(DUp2Ip2)(W)式中:Up2变压器输出电压幅值(V)Ip2二次绕组峰值电流(A)4)确定磁心体积Ve=(12.5P2×103)/f(cm3)式中:计算系数,工作频率f=3050kHz时,=0.3由Ve值选择接近尺寸的磁心。5)一次绕组匝数N1=(Up1ton×102)/f(匝)式中:Up1变压器输入额定电压幅值(V)6)二次绕组匝数N2=(Up2/Up1)N1Ni=UpiN1/Up17)去磁绕组匝数NH=N18)绕组电流有效值二次侧:I2=Ip2一次侧:I1=Up2I2/Up1去磁:IH=(510)I1上述仅是常规计算方法,由于所选用材料及工艺的不同,有些数据应做相应的调整。还应做漏感、分布电容、温升及窗口校核等计算,这些计算较繁琐,经验性较强,必要时请阅专著。作者简介张乃国 男 1937年生,清华大学副教授。于1959年(22岁)编著小型变压器的设计与制作一书,受到读者欢迎,两次重印,1965年出修订本。1988年又主编出版小功率电源变压器一书,选作电工电子技术人员培训及晋升职称参考用书。曾发表多篇有关电子变压器的论文。现任本杂志执行主编(来信请寄本刊编辑部)。 收稿日期:1999.8.6 定稿日期:1999.11.20网上服务如对本文有什么意见或建议,请发电子邮件:sunlanepub.xaonline 主题:开关电源电磁兼容设计资料 摘要:分析了开关电源电磁骚扰的机理,提出相应的抑制措施。讨论了电磁兼容设计中需要加以注意的问题。 1 引言 电磁兼容是指在有限的空间、时间和频谱范围内,各种电气设备共存而不引起性能的下降,它包括电磁骚扰(EMD)和电磁敏感(EMS)两方面的内容。EMD是指电气产品向外发出噪声,EMS则是指电气产品抵抗外来电磁骚扰的能力。一台具备良好电磁兼容性能的设备,应该既不受周围电磁环境的影响也不对周围造成电磁骚扰。 开关电源中的功率开关管在高频下的通、断过程产生大幅度的电压和电流跳变,因而产生强大的电磁骚扰,但骚扰的频率范围(<30MHz)是比较低的。多数小功率开关电源的几何尺寸远小于30MHz电磁场对应的波长(空气介质中约为10m),开关电源系统研究的电磁骚扰现象属于似稳场的范围,研究它们的电磁骚扰问题时,主要考虑的是传导骚扰。 2 电磁骚扰 讨论电磁骚扰一般是从骚扰源的特性,骚扰的耦合通道特性和受扰体的特性三个方面来进行的。 2.1 开关电源中的主要电磁骚扰源 开关电源中的电磁骚扰源主要有开关器件、二极管和非线性无源元件;在开关电源中,印制板布线不当也是引起电磁骚扰的一个主要因素。 开关电路产生的电磁骚扰 对开关电源来说,开关电路产生的电磁骚扰是开关电源的主要骚扰源之一。开关电路是开关电源的核心,主要由开关管和高频变压器组成。它产生的dv/dt是具有较大辐度的脉冲,频带较宽且谐波丰富。这种脉冲骚扰产生的主要原因是 1)开关管负载为高频变压器初级线圈,是感性负载。在开关管导通瞬间,初级线圈产生很大的涌流,并在初级线圈的两端出现较高的浪涌尖峰电压;在开关管断开瞬间,由于初级线圈的漏磁通,致使一部分能量没有从一次线圈传输到二次线圈,储藏在电感中的这部分能量将和集电极电路中的电容、电阻形成带有尖峰的衰减振荡,叠加在关断电压上,形成关断电压尖峰。这种电源电压中断会产生与初级线圈接通时一样的磁化冲击电流瞬变,这个噪声会传导到输入输出端,形成传导骚扰,重者有可能击穿开关管。 2)脉冲变压器初级线圈,开关管和滤波电容构成的高频开关电流环路可能会产生较大的空间辐射,形成辐射骚扰。如果电容滤波容量不足或高频特性不好,电容上的高频阻抗会使高频电流以差模方式传导到交流电源中形成传导骚扰。 二极管整流电路产生的电磁骚扰 主电路中整流二极管产生的反向恢复电流的|di/dt|远比续流二极管反向恢复电流的|di/dt|小得多。作为电磁骚扰源来研究,整流二极管反向恢复电流形成的骚扰强度大,频带宽。整流二极管产生的电压跳变远小于电源中的功率开关管导通和关断时产生的电压跳变。因此,不计整流二极管产生的|dv/dt|和|di/dt|的影响,而把整流电路当成电磁骚扰耦合通道的一部分来研究也是可以的。 与负载大小的关系 功率开关管开通和关断时产生的dv/dt是开关电源的主要骚扰源。经理论分析及实验表明,负载加大,关断产生的|dv/dt|值加大,而负载变化对开通的|dv/dt|影响不大。由于开通和关断时产生的|dv/dt|不同,从而对外部产生的骚扰脉冲也是不同的。 2.2 开关电源电磁噪声的耦合通道 描述开关电源和系统传导骚扰的耦合通道有两种方法: 1)将耦合通道分为共模通道和差模通道; 2)采用系统函数来描述骚扰和受扰体之间的耦合通道的特性。 本文采用第一种方法进行论述。 共模和差模骚扰通道 开关电源在由电网供电时,它将从电网取得的电能变换成另一种特性的电能供给负载。同时开关电源又是一噪声源,通过耦合通道对电网、开关电源本身和其它设备产生骚扰,通常多采用共模和差模骚扰加以分析。 “共模骚扰”是指骚扰大小和方向一致,其存在于电源任何一相对大地、或中线对大地间。共模骚扰也称为纵模骚扰、不对称骚扰或接地骚扰。是载流体与大地之间的骚扰。 “差模骚扰”是指大小相等,方向相反,其存在于电源相线与中线及相线与相线之间。差模骚扰也称为常模骚扰、横模骚扰或对称骚扰。是载流体之间的骚扰。 共模骚扰说明骚扰是由辐射或串扰耦合到电路中的,而差模骚扰则说明骚扰源于同一条电源电路的。通常这两种骚扰是同时存在的,由于线路阻抗的不平衡,两种骚扰在传输中还会相互转化,情况十分复杂。共模骚扰主要是由|dv/dt|产生的,|di/dt|也产生一定的共模骚扰。但是,在低压大电流的开关电源中,共模骚扰主要是由|dv/dt|产生的还是由|di/dt|产生的,需要进一步研究。 在频率不是很高的情况下,开关电源的骚扰源、耦合通道和受扰体实质上构成一多输入多输出的电网络,而将其分解为共模和差模骚扰来研究是对上述复杂网络的一种处理方法,这种处理方法在某种场合还比较合适。但是,将耦合通道分为共模和差模通道具有一定的局限性,虽然能测量出共模分量和差模分量,但共模分量和差模分量是由哪些元器件产生的,的确不易确定。因此有人用系统函数的方法来描述开关电源骚扰的耦合通道,即研究耦合通道的系统函数与各元器件的关系,建立耦合通道的电路模型。许多系统分析的结果,如灵敏度的分析、模态的分析等,都可用来研究开关电源的EMD的调试和预测。但是,用系统函数的方法分析骚扰的耦合通道,还需要做很多工作。 杂散参数影响耦合通道的特性 在传导骚扰频段(小于30MHz)范围内,多数开关电源骚扰的耦合通道是可以用电路网络来描述的。但是,在开关电源中的任何一个实际元器件,如电阻器、电容器、电感器乃至开关管、二极管都包含有杂散参数,且研究的频带愈宽,等值电路的阶次愈高,因此,包括各元器件杂散参数和元器件间的耦合在内的开关电源的等效电路将复杂得多。在高频时,杂散参数对耦合通道的特性影响很大,分布电容的存在成为电磁骚扰的通道。另外,在开关管功率较大时,集电极一般都需加上散热片,散热片与开关管之间的分布电容在高频时不能忽略,它能形成面向空间的辐射骚扰和电源线传导的共模骚扰。 3 电磁骚扰的抑制 对开关电源的EMD的抑制措施,主要是 1)减小骚扰源的骚扰强度; 2)切断骚扰传播途径。 为了达到这个目的,主要从选择合适的开关电源电路拓扑;采用正确的接地、屏蔽、滤波措施;设计合理的元器件布局及印制板布线等几个方面考虑。 3.1 减小开关电源本身的骚扰 减小开关电源本身的骚扰是抑制开关电源骚扰的根本,是使开关电源电磁骚扰低于规定极限值的有效方法。 1)减小功率管通、断过程中产生的骚扰 上面分析表明,开关电源的主要骚扰是来自功率开关管通、断的dv/dt。因此减小功率开关管通、断的dv/dt是减小开关电源骚扰的重要方面。人们通常认为软开关技术可以减小开关管通、断的dv/dt。但是,目前的一些研究结果表明软开关并不像人们预料的那样,可以明显地减小开关电源的骚扰。没有实验结果表明,软开关变换器在EMC性能方面明显地优于硬开关变换器。 有文献系统地研究了PWM反激式变换器、准谐振零电流变频开关正激变换器、多谐振零电压变频开关反激式变换器、多揩振零电压变频开关正激变换器、电压箝位多谐振零电压定频开关反激式变换器以及半桥式零电压变频串联谐振变换器的EMD特性,讨论了缓冲电路、箝位电路、变频与定频控制对骚扰水平的影响。实验结果表明,具有电压箝位的零电压定频开关变换器的EMD电平最低。 因此,采用软开关电源技术,结合合理的元器件布置及合理的印制电路板布线,对开关电源的EMD水平有一定的改善。 2)开关频率调制技术 将频率不变的调制改变为随机调制,变频调制等。频率固定不变的调制脉冲产生的骚扰在低频段主要是调制频率的谐波骚扰,低频段的骚扰主要集中在各谐波点上。由F.Lin提出的开关频率调制方法3,其基本思想是通过调制开关频率fc的方法,把集中在开关频率fc及其谐波2fc,3fc上的能量分散到它们周围的频带上,由此降低各个频点上的EMD幅值,以达到低于EMD标准规定的限值。这种开关调频PWM的方法虽然不能降低总的骚扰能量,但它把能量分散到频点的基带上,以达到各个频点都不超