2023年精品北师大版八年级数学知识点归纳总结整理分单元精校版良心出品必属精品.pdf
1 北师大版八年级全册数学定理知识点汇总 八年级上册 第一章 勾股定理 1、勾股定理 直角三角形两直角边 a,b 的平方和等于斜边 c 的平方,即222cba 2、勾股定理的逆定理 如果三角形的三边长 a,b,c 有关系222cba,那么这个三角形是直角三角形。3、勾股数:满足222cba的三个正整数,称为勾股数。第二章 实数 1、实数的概念及分类 1)实数的分类 正有理数 有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数 无理数 无限不循环小数 负无理数 2)无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:开方开不尽的数,如32,7等;有特定意义的数,如圆周率,或化简后含有 的数,如3+8 等;2 有特定结构的数,如 0。1010010001等;某些三角函数值,如 sin60o等 2、实数的倒数、相反数和绝对值 1)相反数:实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有 a+b=0,a=b,反之亦成立。2)绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则 a0;若|a|=-a,则 a0。3)倒数:如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。倒数等于本身的数是 1 和-1。零没有倒数。4)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。5)估算:3、平方根、算数平方根和立方根 1)算术平方根:一般地,如果一个正数 x 的平方等于 a,即 x2=a,那么这个正数 x就叫做 a 的算术平方根。特别地,0 的算术平方根是 0。表示方法:记作“a”,读作根号 a。性质:正数和零的算术平方根都只有一个,零的算术平方根是零。2)平方根:一般地,如果一个数 x 的平方等于 a,即 x2=a,那么这个数 x 就叫做a 的平方根(或二次方根)。表示方法:正数 a 的平方根记做“a”,读作“正、负根号 a”。性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数 a 的平方根的运算,叫做开平方。0a 3 注意a的双重非负性:a0 3)立方根 一般地,如果一个数 x 的立方等于 a,即 x3=a 那么这个数 x 就叫做 a 的立方根(或三次方根)。表示方法:记作3a 性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:33aa,这说明三次根号内的负号可以移到根号外面。4、实数大小的比较 1)实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。2)实数大小比较的几种常用方法 数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。求差比较:设 a、b 是实数,,0baba,0baba baba0 求商比较法:设a、b 是两正实数,;1;1;1babababababa 绝对值比较法:设a、b 是两负实数,则baba。平方法:设 a、b 是两负实数,则baba22。5、算术平方根有关计算(二次根式)1)含有二次根号“”;被开方数 a 必须是非负数。2)性质:)0()(2 aaa )0(aa 4 aa2 )0(aa )0,0(babaab()0,0(baabba))0,0(bababa ()0,0(bababa)3)运算结果若含有“a”形式,必须满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式 6、实数的运算 1)六种运算:加、减、乘、除、乘方 、开方 2)实数的运算顺序:先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。3)运算律 加法交换律 abba 加法结合律 )()(cbacba 乘法交换律 baab 乘法结合律 )()(bcacab 乘法对加法的分配律 acabcba)(第三章 图形的平移与旋转 1、平移 1)定义:在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。2)性质:平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。2、旋转 1)定义:在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。2)性质:旋转前后两个图形是全等图形,对应点到旋转中心的距离相 5 等,对应点与旋转中心的连线所成的角等于旋转角。第四章 四边形性质探索 1、四边形的相关概念 1)四边形 在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。2)四边形具有不稳定性 3)四边形的内角和定理及外角和定理 4)四边形的内角和定理:四边形的内角和等于360。5)四边形的外角和定理:四边形的外角和等于360。推论:多边形的内角和定理:n 边形的内角和等于)2(n180;多边形的外角和定理:任意多边形的外角和等于360。6)设多边形的边数为 n,则多边形的对角线共有2)3(nn条。从 n 边形的一个顶点出发能引(n-3)条对角线,将 n 边形分成(n-2)个三角形。2、平行四边形 1)平行四边形的定义 两组对边分别平行的四边形叫做平行四边形。2)平行四边形的性质 平行四边形的对边平行且相等。平行四边形相邻的角互补,对角相等 平行四边形的对角线互相平分。平行四边形是中心对称图形,对称中心是对角线的交点。常用点:若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。推论:夹在两条平行线间的平行线段相等。3)平行四边形的判定 a)定义:两组对边分别平行的四边形是平行四边形 b)定理 1:两组对角分别相等的四边形是平行四边形 c)定理 2:两组对边分别相等的四边形是平行四边形 d)定理 3:对角线互相平分的四边形是平行四边形 e)定理 4:一组对边平行且相等的四边形是平行四边形 4)两条平行线的距离 6 两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。平行线间的距离处处相等。5)平行四边形的面积:S平行四边形=底边长高=ah 3、矩形 1)矩形的定义 有一个角是直角的平行四边形叫做矩形。2)矩形的性质 矩形的对边平行且相等 矩形的四个角都是直角 矩形的对角线相等且互相平分 矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。3)矩形的判定 a)定义:有一个角是直角的平行四边形是矩形 b)定理 1:有三个角是直角的四边形是矩形 c)定理 2:对角线相等的平行四边形是矩形 4)矩形的面积:S矩形=长宽=ab 4、菱形 1)菱形的定义 有一组邻边相等的平行四边形叫做菱形 2)菱形的性质 菱形的四条边相等,对边平行 菱形的相邻的角互补,对角相等 菱形的对角线互相垂直平分,并且每一条对角线平分一组对角 菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。3)菱形的判定 a)定义:有一组邻边相等的平行四边形是菱形 b)定理 1:四边都相等的四边形是菱形 c)定理 2:对角线互相垂直的平行四边形是菱形 4)菱形的面积:S菱形=底边长高=两条对角线乘积的一半 5、正方形 1)正方形的定义 有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。2)正方形的性质 正方形四条边都相等,对边平行 7 正方形的四个角都是直角 正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角 正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。3)正方形的判定 判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证它是菱形。先证它是菱形,再证它是矩形。4)正方形的面积 设正方形边长为 a,对角线长为 b,则:S正方形=222ba 6、梯形 1)梯形的相关概念 一组对边平行而另一组对边不平行的四边形叫做梯形。梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。梯形中不平行的两边叫做梯形的腰。梯形的两底的距离叫做梯形的高。2)梯形的判定 定义:一组对边平行而另一组对边不平行的四边形是梯形。一组对边平行且不相等的四边形是梯形。直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分类如下:一般梯形 梯形 直角梯形 特殊梯形 等腰梯形 3)等腰梯形 a)等腰梯形的定义:两腰相等的梯形叫做等腰梯形。b)等腰梯形的性质 等腰梯形的两腰相等,两底平行。等腰梯形同一底上的两个角相等,同一腰上的两个角互补。等腰梯形的对角线相等。等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。c)等腰梯形的判定 定义:两腰相等的梯形是等腰梯形 定理:在同一底上的两个角相等的梯形是等腰梯形 对角线相等的梯形是等腰梯形。(选择题和填空题可直接用)8 4)梯形的面积 a)如图,DEABCDSABCD)(21梯形 b)梯形中有关图形的面积:BACABDSS;BOCAODSS;BCDADCSS 7、有关中点四边形问题的知识点:1)顺次连接任意四边形的四边中点所得的四边形是平行四边形;2)顺次连接矩形的四边中点所得的四边形是菱形;3)顺次连接菱形的四边中点所得的四边形是矩形;4)顺次连接等腰梯形的四边中点所得的四边形是菱形;5)顺次连接对角线相等的四边形四边中点所得的四边形是菱形;6)顺次连接对角线互相垂直的四边形四边中点所得的四边形是矩形;7)顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是正方形;8、中心对称图形 1)定义 在平面内,一个图形绕某个点旋转 180,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。2)性质 关于中心对称的两个图形是全等形。关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。3)判定 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。9、四边形、矩形、菱形、正方形、梯形、等腰梯形、直角梯形的关系图:9 第六章 位置的确定 1、在平面内,确定物体的位置一般需要两个数据。2、平面直角坐标系及有关概念 1)平面直角坐标系 在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系 水平的数轴叫做 x 轴或横轴,取向右为正方向 铅直的数轴叫做 y 轴或纵轴,取向上为正方向 x 轴和 y 轴统称坐标轴。它们的公共原点 O称为直角坐标系的原点 建立了直角坐标系的平面,叫做坐标平面 2)象限:为了便于描述坐标平面内点的位置,把坐标平面被 x 轴和 y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x 轴和 y 轴上的点(坐标轴上的点),不属于任何一个象限。3)点的坐标的概念 对于平面内任意一点 P,过点 P分别 x 轴、y 轴向作垂线,垂足在上 x 轴、y 轴对应的数 a,b 分别叫做点 P的横坐标、纵坐标,有序数对(a,b)叫做点 P的坐标 10 点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒 平面内点的坐标是有序实数对,当ba 时,(a,b)和(b,a)是两个不同点的坐标 平面内点的与有序实数对是一一对应的。4)不同位置的点的坐标的特征 a)各象限内点的坐标的特征 点 P(x,y)在第一象限0,0yx 点 P(x,y)在第二象限0,0yx 点 P(x,y)在第三象限0,0yx 点 P(x,y)在第四象限0,0yx b)坐标轴上的点的特征 点 P(x,y)在 x 轴上0 y,x 为任意实数 点 P(x,y)在 y 轴上0 x,y 为任意实数 点 P(x,y)既在 x 轴上,又在 y 轴上x,y 同时为零,即点P坐标为(0,0)即原点 c)两条坐标轴夹角平分线上点的坐标的特征 点 P(x,y)在第一、三象限夹角平分线(直线 y=x)上x 与y 相等 点 P(x,y)在第二、四象限夹角平分线上x 与 y 互为相反数 d)和坐标轴平行的直线上点的坐标的特征 位于平行于 x 轴的直线上的各点的纵坐标相同。位于平行于 y 轴的直线上的各点的横坐标相同。e)关于 x 轴、y 轴或原点对称的点的坐标的特征 点 P与点 p关于 x 轴对称横坐标相等,纵坐标互为相反数,即点 P(x,y)关于 x 轴的对称点为 P(x,-y)点 P与点 p关于 y 轴对称纵坐标相等,横坐标互为相反数,即点 P(x,y)关于 y 轴的对称点为 P(-x,y)点 P与点 p关于原点对称横、纵坐标均互为相反数,即点 P(x,y)关于原点的对称点为 P(-x,-y)(6)、点到坐标轴及原点的距离 点 P(x,y)到坐标轴及原点的距离:11 点 P(x,y)到 x 轴的距离等于y 点 P(x,y)到 y 轴的距离等于x 点 P(x,y)到原点的距离等于22yx 3、坐标变化与图形变化的规律:坐标(x,y)的变化 图形的变化 x a或 y a 被横向或纵向拉长(压缩)为原来的 a 倍 x a,y a 放大(缩小)为原来的 a 倍 x(-1)或 y(-1)关于 y 轴或 x 轴对称 x(-1),y(-1)关于原点成中心对称 x+a 或 y+a 沿 x 轴或 y 轴平移 a 个单位 x+a,y+a 沿 x 轴平移 a 个单位,再沿 y 轴平移 a个单 第七章 一次函数 1、函数:一般地,在某一变化过程中有两个变量 x 与 y,如果给定一个 x 值,相应地就确定了一个 y 值,那么我们称 y 是 x 的函数,其中 x 是自变量,y 是因变量。2、自变量取值范围 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为 0)、二次根式(被开方数为非负数)、实际意义几方面考虑。3、函数的三种表示法及其优缺点 1)关系式(解析)法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。2)列表法 把自变量 x 的一系列值和函数 y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。12 3)图象法 用图象表示函数关系的方法叫做图象法。4、由函数关系式画其图像的一般步骤 1)列表:列表给出自变量与函数的一些对应值 2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。5、正比例函数和一次函数 1)正比例函数和一次函数的概念 一般地,若两个变量 x,y 间的关系可以表示成bkxy(k,b为常数,k0)的形式,则称 y 是 x 的一次函数(x 为自变量,y 为因变量)。特别地,当一次函数bkxy中的b=0时(即kxy)(k 为常数,k0),称 y 是 x 的正比例函数。2)一次函数的图像:所有一次函数的图像都是一条直线 3)一次函数、正比例函数图像的主要特征:一次函数bkxy的图像是经过点(0,b)的直线;正比例函数kxy 的图像是经过原点(0,0)的直线。13 k 的符号 b 的符号 函数图像 图像特征 k0 b0 y 0 x 图像经过一、二、三象限,y随 x 的增大而增大。b0 y 0 x 图像经过一、三、四象限,y随 x 的增大而增大。K0 y 0 x 图像经过一、二、四象限,y 随 x 的增大而减小 b0时,图像经过第一、三象限,y 随 x 的增大而增大;当 k0时,y 随 x 的增大而增大 当 k0时,y 随 x 的增大而减小 6)正比例函数和一次函数解析式的确定 确定一个正比例函数,就是要确定正比例函数定义式kxy(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式bkxy(k0)中的常数k 和 b。解这类问题的一般方法是待定系数法。7)一次函数与一元一次方程的关系:任何一个一元一次方程都可转化为:kx+b=0(k、b 为常数,k0)的形式 而一次函数解析式形式正是 y=kx+b(k、b 为常数,k0)当函数值为 0 时,即 kx+b=0 就与一元一次方程完全相同 结论:由于任何一元一次方程都可转化为kx+b=0(k、b 为常数,k0)的形式所以解一元一次方程可以转化为:当一次函数值为 0时,求相应的自变量的值 从图象上看,这相当于已知直线y=kx+b 确定它与 x 轴交点的横坐标值 第八章 二元一次方程组 1、二元一次方程 含有两个未知数,并且所含未知数的项的次数都是1 的整式方程叫做二元一次方程。2、二元一次方程的解 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。3、二元一次方程组 含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。4 二元一次方程组的解 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。5、二元一次方程组的解法 15 代入(消元)法 加减(消元)法 6、一次函数与二元一次方程(组)的关系:1)一次函数与二元一次方程的关系:直线 y=kx+b 上任意一点的坐标都是它所对应的二元一次方程 kx-y+b=0 的解 2)一次函数与二元一次方程组的关系:二元一次方程组 的解可看作两个一次函数 和 的图象的交点。当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。第九章 数据的代表 1、刻画数据的集中趋势(平均水平)的量:平均数、众数、中位数 2、平均数 1)平均数:一般地,对于 n 个数,21nxxx我们把)(121nxxxn叫做这 n 个数的算术平均数,简称平均数,记为x。2)加权平均数:3、众数 一组数据中出现次数最多的那个数据叫做这组数据的众数。4、中位数 一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。222111cybxacybxa11111bcxbay22122bcxbay 16 八年级下册 第一章 一元一次不等式和一元一次不等式组 1、不等关系 1)一般地,用符号“”(或“”),“”(或“”)连接的式子叫做不等式 2)能使不等式成立的未知数的值,叫做不等式的解 3)不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集 4)求不等式解集的过程叫解不等式 5)由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组 6)不等式组的解集:一元一次不等式组各个不等式的解集的公共部分 7)等式基本性质:a)在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式 b)在等式的两边都乘以或除以同一个数(除数不为 0),所得的结果仍是等式 8)要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系 9)准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语 非负数 大于等于 0(0)0和正数 不小于0 非正数 小于等于 0(0)0和负数 不大于0 2、不等式的基本性质 1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果 ab,那么 a+cb+c,a-cb-c。2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:如果 ab,并且 c0,那么 acbc,cbca。3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果 ab,并且 c0,那么 acb,那么 a-b 是正数;反过来,如果 a-b 是正数,那么 ab;如果 a=b,那么 a-b 等于 0;反过来,如果 a-b 等于 0,那么 a=b;17 如果 ab,那么 a-b 是负数;反过来,如果 a-b 是正数,那么 ab a-b0 a=b a-b=0 ab a-bb(或 ax0 时,解为abx;当 a=0 时,且 b0,则 x 取一切实数;当 a=0 时,且 b0,则无解;当 a0 时,解为abx;5)不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:a)审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义 b)设:设出适当的未知数 c)列:根据题中的不等关系,列出不等式 d)解:解出所列的不等式的解集 e)答:写出答案,并检验答案是否符合题意 18 5、一元一次不等式组 1)定义:由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组 2)一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集。如果这些不等式的解集无公共部分,就说这个不等式组无解 几个不等式解集的公共部分,通常是利用数轴来确定 3)解一元一次不等式组的步骤:a)分别求出不等式组中各个不等式的解集;b)利用数轴求出这些解集的公共部分,即这个不等式组的解集。4)两个一元一次不等式组的解集的四种情况(a、b 为实数,且 ab ba 两大取较大 bxax xa ba 两小取小 bxax axb ba 大小交叉中间找 bxax 无解 ba 在大小分离没有解(是空集)6、常考题型:5)求 4x-67x-12 的非负数解。6)已知 3(x-a)=x-a+1 的解适合 2(x-5)8a,求 a 的范围。7)当 m取何值时,3x+m-2(m+2)=3m+x的解在-5 和 5 之间。第二章 分解因式 1、分解因式 1)把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式 2)因式分解与整式乘法是互逆关系 3)因式分解与整式乘法的区别和联系:整式乘法是把几个整式相乘,化为一个多项式;因式分解是把一个多项式化为几个因式相乘。19 2、提公共因式法 1)如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。这种分解因式的方法叫做提公因式法。如:)(cbaacab 2)概念内涵:因式分解的最后结果应当是“积”公因式可能是单项式,也可能是多项式 提公因式法的理论依据是乘法对加法的分配律,即:)(cbammcmbma 3)易错点点评:注意项的符号与幂指数是否搞错 公因式是否提“干净”多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉 3、运用公式法 1)如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。2)主要公式:平方差公式:)(22bababa 应是二项式或视作二项式的多项式 二项式的每项(不含符号)都是一个单项式(或多项式)的平方 二项是异号 完全平方公式:222)(2bababa 222)(2bababa 应是三项式 其中两项同号,且各为一整式的平方 还有一项可正负,且它是前两项幂的底数乘积的2 倍 3)易错点点评:因式分解要分解到底。如)(222244yxyxyx就没有分解到底 4)因式分解的思路与解题步骤:a)先看各项有没有公因式,若有,则先提取公因式 b)再看能否使用公式法 20 c)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的 d)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解 e)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止 4、分组分解法:1)分组分解法:利用分组来分解因式的方法叫做分组分解法 如:)()()(nmbanmbnmabnbmanam 2)概念内涵:分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式。注意:分组时要注意符号的变化。5、十字相乘法:1)对于二次三项式cbxax2,将 a 和 c 分别分解成两个因数的乘积,21aaa,21ccc,且满足1221cacab,往往写成c2a2c1a1 的形式,将二次三项式进行分解)(22112cxacxacbxax 2)二次三项式qpxx2的分解:)(2bxaxqpxx abqbap 3)规律内涵:理解:把qpxx2分解因式时,如果常数项q 是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p 的符号相同 如果常数项q 是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p 的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p 4)易错点点评:十字相乘法在对系数分解时易出错 分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确 ba11 21 第三章 分式 1、分式 1)两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式 整式 A除以整式 B,可以表示成BA的形式。如果除式 B中含有字母,那么称BA为分式,对于任意一个分式,分母都不能为零 2)整式和分式统称为有理式,即有:分式整式有理式 3)进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变)0(,MMBMABAMBMABA 4)一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分 2、分式的乘除法 1)分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘 即:BDACDCBA,CBDACDBADCBA 2)分式乘方,把分子、分母分别乘方 即:)(为正整数nBABAnnn 逆向运用nnnBABA,当 n 为整数时,仍然有nnnBABA成立 3)分子与分母没有公因式的分式,叫做最简分式 3、分式的加减法 22 1)分式与分数类似,也可以通分。根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。2)分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减。同分母的分式相加减,分母不变,把分子相加减;上述法则用式子表示是:CBACBCA 异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:BDBCADBDBCBDADDCBA 3)概念内涵:通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的最高次幂的积,如果分母是多项式,则首先对多项式进行因式分解 4、分式方程 1)解分式方程的一般步骤:a)在方程的两边都乘最简公分母,约去分母,化成整式方程 b)解这个整式方程 c)把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去 2)列分式方程解应用题的一般步骤:a)审清题意 b)设未知数 c)根据题意找相等关系,列出(分式)方程 d)解方程,并验根 e)写出答案 第四章 相似图形 1、线段的比 1)如果选用同一个长度单位量得两条线段 AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成nmBA。23 2)四条线段 a、b、c、d 中,如果 a 与 b 的比等于 c 与 d 的比,即dcba,那么这四条线段 a、b、c、d 叫做成比例线段,简称比例线段。3)注意点:a)a:b=k,说明 a 是 b 的 k 倍;b)由于线段 a、b 的长度都是正数,所以 k 是正数;c)比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;d)除了 a=b 之外,a:b b:a,ba与ab互为倒数;e)比例的基本性质:若dcba,则 ad=bc;若 ad=bc,则dcba 2、黄金分割 1)如图 1,点 C把线段 AB分成两条线段 AC和 BC,如果ACBCABAC,那么称线段 AB被点 C黄金分割,点 C叫做线段AB的黄金分割点,AC与 AB的比叫做黄金比。1:618.0215:ABAC 2)黄金分割点是最优美、最令人赏心悦目的点。3、相似多边形 1)一般地,形状相同的图形称为相似图形 2)对应角相等、对应边成比例的两个多边形叫做相似多边形。相似多边形对应边的比叫做相似比 4、相似三角形 1)在相似多边形中,最为简简单的就是相似三角形。2)对应角相等、对应边成比例的三角形叫做相似三角形。相似三角形对应边的比叫做相似比。3)全等三角形是相似三角的特例,这时相似比等于 1。注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应_ 图 1 _ B _ C _ A 24 的位置上。4)相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比。5)相似三角形周长的比等于相似比。6)相似三角形面积的比等于相似比的平方。5、探索三角形相似的条件 1)相似三角形的判定方法:一般三角形 直角三角形 基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似。两角对应相等;两边对应成比例,且夹角相等;三边对应成比例。一个锐角对应相等;两条边对应成比例:a。两直角边对应成比例;b。斜边和一直角边对应成比例。2)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。如图 2,l1/l2/l3,则EFBCDEAB。3)平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。6、相似的多边形的性质 相似多边形的周长等于相似比,面积比等于相似比的平方 7、图形的放大与缩小 _ 图 2 _ F _ E _ D _ C _ B _ A _ l _ 3 _ l _ 2 _ l _ 1 25 1)如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形;这个点叫做位似中心;这时的相似比又称为位似比。2)位似图形上任意一对对应点到位似中心的距离之比等于位似比。3)位似变换(不要求掌握):变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例。像这种特殊的相似变换叫做位似变换。这个交点叫做位似中心 一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形 利用位似的方法,可以把一个图形放大或缩小 第五章 数据的收集与处理 1、相关概念 1)总体:所要考察的对象的全体叫做总体 2)个体:把组成总体的每一个考察对象叫做个体 3)样本:从总体中取出的一部分个体叫做这个总体的一个样本 4)普查:为一特定目的而对所有考察对象作的全面调查叫做普查 5)抽样调查:为一特定目的而对部分考察对象作的调查叫做抽样调查 2、数据的收集 1)抽样调查的特点:调查的范围小、节省时间和人力物力优点。但不如普查得到的调查结果精确,它得到的只是估计值 2)估计值是否接近实际情况还取决于样本选得是否有代表性 第六章 证明(一)1、定义与命题 1)一般地,能明确指出概念含义或特征的句子,称为定义。定义必须是严密的。一般避免使用含糊不清的术语,例如“一些”、“大概”、“差不多”等不能在定义中出现。2)可以判断它是正确的或是错误的句子叫做命题。正确的命题称为真命题,错误的命题称为假命题。3)数学中有些命题的正确性是人们在长期实践中总结出来的,并且把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理。4)有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理。26 5)根据题设、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明。2、为什么它们平行 1)平行判定公理:同位角相等,两直线平行。(并由此得到平行的判定定理)2)平行判定定理:同旁内互补,两直线平行。3)平行判定定理:同错角相等,两直线平行。3、如果两条直线平行 1)两条直线平行的性质公理:两直线平行,同位角相等;2)两条直线平行的性质定理:两直线平行,内错角相等;3)两条直线平行的性质定理:两直线平行,同旁内角互补。4、三角形和定理的证明 1)三角形内角和定理:三角形三个内角的和等于 180 2)一个三角形中至多只有一个直角 3)一个三角形中至多只有一个钝角 4)一个三角形中至少有两个锐角 六。关注三角形的外角 1)三角形内角和定理的两个推论:2)三角形的一个外角等于和它不相邻的两个内角的和;3)三角形的一个外角大于任何一个和它不相邻的内角。