欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高中数学说课稿:函数单调性与(小)值.docx

    • 资源ID:92107063       资源大小:32.53KB        全文页数:33页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高中数学说课稿:函数单调性与(小)值.docx

    高中数学说课稿:函数单调性与(小)值_高中数学名师教案 一.说教材 地位及重要性函数的单调性一节属高中数学第一册(上)的必修内容,在高考的重要考察范围之内。函数的单调性是函数的一个重要性质,也是在讨论函数时常常要留意的一共性质,并且在比拟几个数的大小、对函数的定性分析以及与其他学问的综合应用上都有广泛的应用。通过对这一节课的学习,既可以让学生把握函数单调性的概念和证明函数单调性的步骤,又可加深对函数的本质熟悉。也为今后讨论详细函数的性质作了充分预备,起到承上启下的作用。教学目标(1)了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;(2)了解能用图形语言正确表述具有单调性的函数的图象特征;(3)明确把握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简洁函数的单调性;(4)培育学生严密的规律思维力量、用运动变化、数形结合、分类争论的方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看问题。教学重难点重点是对函数单调性的有关概念的本质理解。难点是利用函数单调性的概念证明或推断详细函数的单调性。二.说教法依据本节课的内容及学生的实际水平,我尝试运用“问题解决”与“多媒体帮助教学”的模式。力图通过提出问题、思索问题、解决问题的过程,让学生主动参加以到达对学问的“发觉”与承受,进而完成对学问的内化,使书本学问成为自己学问;同时也培育学生的探究精神。三.说学法在教学过程中,教师设置问题情景让学生想方法解决;通过教师的启发点拨,学生的不断探究,最终把解决问题的核心归结到推断函数的单调性。然后通过对函数单调性的概念的学习理解,最终把问题解决。整个过程学生学生主动参加、积极思索、探究尝试的动态活动之中;同时让学生体验到了学习数学的欢乐,培育了学生自主学习的力量和以严谨的科学态度讨论问题的习惯。四.说过程通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培育学生的自主学习的力量,以点拨、启发、引导为教师职责。设置问题情景引例学校预备建筑一个矩形花坛,面积设计为16平方米。由于四周环境的限制,其中一边的长度长不能超过10米,短不能少于4米。记花坛受限制的一边长为x米,半周长为y米。写出y与x的函数表达式;求(1)中函数的值。(用多媒体出示问题,并让学生思索)通过问题情景的设置主要是为了到达以下两个目的:第一问为了复习回忆函数的表达式;高中高一数学说课稿范文:函数单调性与(小)值 各位评委教师,大家好! 我是本科数学*号选手,今日我要进展说课的课题是高中数学必修一第一章第三节第一课时函数单调性与(小)值(可以在这时候板书课题,以缓解紧急)。我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批判指正。 一、教材分析 1、 教材的地位和作用 (1)本节课主要对函数单调性的学习; (2)它是在学习函数概念的根底上进展学习的,同时又为根本初等函数的学习奠定了根底,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写) (3)它是历年高考的热点、难点问题 (依据详细的课题转变就行了,假如不是热点难点问题就删掉) 2、 教材重、难点 重点:函数单调性的定义 难点:函数单调性的证明 重难点突破:在学生已有学问的根底上,通过仔细观看思索,并通过小组合作探究的方法来实现重难点突破。(这个必需要有) 二、教学目标 学问目标:(1)函数单调性的定义 (2)函数单调性的证明 力量目标:培育学生全面分析、抽象和概括的力量,以及了解由简洁到简单,由特别到一般的化归思想 情感目标:培育学生勇于探究的精神和蔼于合作的意识 (这样的教学目标设计更注意教学过程和情感体验,立足教学目标多元化) 三、教法学法分析 1、教法分析 “教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采纳以下教学方法:开放式探究法、启发式引导法、小组合作争论法、反应式评价法 2、学法分析 “授人以鱼,不如授人以渔”,最有价值的学问是关于方法的只是。学生作为教学活动的主题,在学习过程中的参加状态和参加度是影响教学效果最重要的因素。在学法选择上,我主要采纳:自主探究法、观看发觉法、合作沟通法、归纳总结法。 (前三局部用时掌握在三分钟以内,可适当删减) 四、教学过程 1、以旧引新,导入新知 通过课前小讨论让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x2的图像,并观看函数图象的特点,总结归纳。通过课上小组争论归纳,引导学生发觉,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x2的图像是一个曲线,在(-,0)上是下降的,而在(0,+)上是上升的。(适当添加手势,这样看起来更自然) 2、创设问题,探究新知 紧接着提出问题,你能用二次函数f(x)=x2表达式来描述函数在(-,0)的图像?教师总结,并板书,提醒函数单调性的定义,并留意强调可以利用作差法来推断这个函数的单调性。 让学生仿照刚刚的表述法来描述二次函数f(x)=x2在(0,+)的图像,并找个别同学起来作答,标准学生的数学用语。 让学生自主学习函数单调区间的定义,为接下来例题学习打好根底。 3、 例题讲解,学以致用 例1主要是对函数单调区间的稳固运用,通过观看函数定义在(5,5)的图像来找出函数的单调区间。这一例题主要以学生个别答复为主,学生答复之后通过互评来订正答案,检查学生对函数单调区间的把握。强调单调区间一般写成半开半闭的形式 例题讲解之后可让学生自行完成课后练习4,以学生集体答复的方式检验学生的学习效果。 例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采纳教师板演的方式,来对例题进展证明,以标准总结证明步骤。一设二差三化简四比拟,留意要把f(x1)-f(x2)化简成和差积商的形式,再比拟与0的大小。 学生在熟识证明步骤之后,做课后练习3,并以小组为单位找局部同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。 4、归纳小结 本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注意培育学生勇于探究的精神和蔼于合作的意识。 5、作业布置 为了让学生学习不同的数学,我将采纳分层布置作业的方式:一组 习题1.3A组1、2、3 ,二组 习题1.3A组2、3、B组1、2 6、板书设计 我力求简洁明白地概括本节课的学习要点,让学生一目了然。 (这局部最重要用时六到七分钟,其中定义讲解跟例题讲解肯定要说明学生的活动) 五、教学评价 本节课是在学生已有学问的根底上学习的,在教学过程中通过自主探究、合作沟通,充分调动学生的积极性跟主动性,准时汲取反应信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。 高中数学教案:函数单调性与奇偶性 教学目标 1.了解函数的单调性和奇偶性的概念,把握有关证明和推断的根本方法.(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.(2)能从数和形两个角度熟悉单调性和奇偶性.(3)能借助图象推断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义推断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.2.通过函数单调性的证明,提高学生在代数方面的推理论证力量;通过函数奇偶性概念的形成过程,培育学生的观看,归纳,抽象的力量,同时渗透数形结合,从特别到一般的数学思想.3.通过对函数单调性和奇偶性的理论讨论,增学生对数学美的体验,培育乐于求索的精神,形成科学,严谨的讨论态度.教学建议一、学问构造(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.二、重点难点分析(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉.教学的难点是领悟函数单调性, 奇偶性的本质,把握单调性的证明.(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观看图象的上升与下降,而现在要求把它上升到理论的高度,用精确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比拟困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的力量是比拟弱的,很多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.三、教法建议(1)函数单调性概念引入时,可以先从学生熟识的一次函数,二次函数.反比例函数图象动身,回忆图象的增减性,从这点感性熟悉动身,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发觉自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来.(2)函数单调性证明的步骤是严格规定的,要让学生根据步骤去做,就必需让他们明确每一步的必要性,每一步的目的,特殊是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮忙学生总结规律.函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观看对应的函数值的变化规律,先从详细数值开头,渐渐让在数轴上动起来,观看任意性,再让学生把看到的用数学表达式写出来.经受了这样的过程,再得到等式时,就比拟简单体会它代表的是很多多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进展屡次改动,帮忙学生发觉定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.高一上册数学说课稿函数单调性 这篇高一上册数学说课稿函数单调性是小编为大家整理的,盼望对大家有所帮忙。以下信息仅供参考! 高中数学说课稿函数单调性 各位评委教师,大家好!我是本科数学*号选手,今日我要进展说课的课题是高中数学必修一第一章第三节第一课时函数单调性与(小)值(可以在这时候板书课题,以缓解紧急)。我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批判指正。一、教材分析1、 教材的地位和作用(1)本节课主要对函数单调性的学习;(2)它是在学习函数概念的根底上进展学习的,同时又为根本初等函数的学习奠定了根底,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)(3)它是历年高考的热点、难点问题(依据详细的课题转变就行了,假如不是热点难点问题就删掉)2、 教材重、难点重点:函数单调性的定义难点:函数单调性的证明重难点突破:在学生已有学问的根底上,通过仔细观看思索,并通过小组合作探究的方法来实现重难点突破。(这个必需要有)二、教学目标学问目标:(1)函数单调性的定义(2)函数单调性的证明力量目标:培育学生全面分析、抽象和概括的力量,以及了解由简洁到简单,由特别到一般的化归思想情感目标:培育学生勇于探究的精神和蔼于合作的意识(这样的教学目标设计更注意教学过程和情感体验,立足教学目标多元化)三、教法学法分析1、教法分析“教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采纳以下教学方法:开放式探究法、启发式引导法、小组合作争论法、反应式评价法2、学法分析“授人以鱼,不如授人以渔”,最有价值的学问是关于方法的只是。学生作为教学活动的主题,在学习过程中的参加状态和参加度是影响教学效果最重要的因素。在学法选择上,我主要采纳:自主探究法、观看发觉法、合作沟通法、归纳总结法。(前三局部用时掌握在三分钟以内,可适当删减)四、教学过程1、以旧引新,导入新知通过课前小讨论让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x2的图像,并观看函数图象的特点,总结归纳。通过课上小组争论归纳,引导学生发觉,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x2的图像是一个曲线,在(-,0)上是下降的,而在(0,+)上是上升的。(适当添加手势,这样看起来更自然)2、创设问题,探究新知紧接着提出问题,你能用二次函数f(x)=x2表达式来描述函数在(-,0)的图像?教师总结,并板书,提醒函数单调性的定义,并留意强调可以利用作差法来推断这个函数的单调性。让学生仿照刚刚的表述法来描述二次函数f(x)=x2在(0,+)的图像,并找个别同学起来作答,标准学生的数学用语。让学生自主学习函数单调区间的定义,为接下来例题学习打好根底。3、 例题讲解,学以致用例1主要是对函数单调区间的稳固运用,通过观看函数定义在(5,5)的图像来找出函数的单调区间。这一例题主要以学生个别答复为主,学生答复之后通过互评来订正答案,检查学生对函数单调区间的把握。强调单调区间一般写成半开半闭的形式例题讲解之后可让学生自行完成课后练习4,以学生集体答复的方式检验学生的学习效果。例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采纳教师板演的方式,来对例题进展证明,以标准总结证明步骤。一设二差三化简四比拟,留意要把f(x1)-f(x2)化简成和差积商的形式,再比拟与0的大小。学生在熟识证明步骤之后,做课后练习3,并以小组为单位找局部同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。4、归纳小结本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注意培育学生勇于探究的精神和蔼于合作的意识。5、作业布置为了让学生学习不同的数学,我将采纳分层布置作业的方式:一组 习题1.3A组1、2、3 ,二组 习题1.3A组2、3、B组1、26、板书设计我力求简洁明白地概括本节课的学习要点,让学生一目了然。(这局部最重要用时六到七分钟,其中定义讲解跟例题讲解肯定要说明学生的活动)五、教学评价本节课是在学生已有学问的根底上学习的,在教学过程中通过自主探究、合作沟通,充分调动学生的积极性跟主动性,准时汲取反应信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。(这一局部不能缺,话语可适当精简)以上就是我对本节课的设计,感谢! 板书设计: 1.3.1函数单调性与(小)值 一、定义 二、例1.(-,0) X1,X2 X1f(X2) X1-X20 2. 高中数学说课稿:三角函数 一、教材分析 (一)内容说明 函数是中学数学的重要内容,中学数学对函数的讨论大致分成了三个阶段。 三角函数是代表性的一种根本初等函数。4.8节是其次章函数学习的延长,也是第四章三角函数的核心内容,是在前面已经学习过正、余弦函数的图象、三角函数的有关概念和公式根底上进展的,其学问和方法将为后续内容的学习打下根底,有承上启下的作用。 本节课是数形结合思想方法的良好素材。数形结合是数学讨论中的重要思想方法和解题方法。 数学家华罗庚先生的诗句:.数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.可以说精辟地道出了数形结合的重要性。 本节通过对数形结合的进一步熟悉,可以改良学习方法,增加学习数学的自信念和兴趣。另外,三角函数的曲线性质也表达了数学的对称之美、和谐之美。 因此,本节课在教材中的学问作用和思想地位是相当重要的。 (二)课时安排 4.8节教材安排为4课时,我规划用5课时 (三)目标和重、难点 1.教学目标 教学目标确实定,考虑了以下几点: (1)高一学生有肯定的抽象思维力量,而形象思维在学习中占有不行替代的地位,所以本节要紧紧抓住数形结合方法进展探究; (2)本班学生对数学科特殊是函数内容的学习有畏难心情,所以在内容上要降低深难度。 (3)学会方法比获得学问更重要,本节课着眼于新学问的探究过程与方法,稳固应用主要放在后面的三节课进展。 由此,我确定了以下三个层面的教学目标: (1)学问层面:结合正弦曲线、余弦曲线,师生共同探究发觉正(余)弦函数的性质,让学生学会正确表述正、余函数的单调性和对称性,理解体会周期函数性质的讨论过程和数形结合的讨论方法; (2)力量层面:通过在教师引导下探究新知的过程,培育学生观看、分析、归纳的自学力量,为学生学习的可持续进展打下根底; (3)情感层面:通过运用数形结合思想方法,让学生体会(数学)问题从抽象到形象的转化过程,体会数学之美,从而激发学习数学的信念和兴趣。 2. 重、难点 由以上教学目标可知,本节重点是师生共同探究,正、余函数的性质,在探究中体会数形结合思想方法。 难点是:函数周期定义、正弦函数的单调区间和对称性的理解。 为什么这样确定呢? 由于周期概念是学生第一次接触,理解上易错;单调区间从图上简单看出,但用一个区间形式表示出来,学生感到困难。 如何克制难点呢? 其一,抓住周期函数定义中的关键字眼,举反例说明; 其二,利用函数的周期性规律,抓住“横向距离”和“kZ“的含义,充分结合图象来理解单调性和对称性 二、教法分析 (一)教法说明 教法确实定基于如下考虑: (1)心理学的讨论说明:只有内化的东西才能充格外显,只有学生自己猎取的学问,他才能敏捷应用,所以要注意学生的自主探究。 (2)本节目的是让学生学会如何探究、理解正、余弦函数的性质。教师始终要留意的是引导学生探究,而不是自己探究、学生观看,所以教师要引导,而且只能引导不能代办,否则不但没有教给学习方法,而且会让学生产生依靠和倦怠。 (3)本节内容属于根源性学问,一般采纳观看、试验、归纳、总结为主的方法,以培育学生自学力量。 所以,依据以人为本,以学定教的原则,我实行以问题为解决为中心、启发为主的教学方法,形成教师点拨引导、学生积极参加、师生共同探讨的课堂构造形式,营造一种民主和谐的课堂气氛。 (二) 教学手段说明: 为完本钱节课的教学目标,突出重点、克制难点,我实行了以下三个教学手段: (1)细心设计课堂提问,整个课堂以问题为线索,带着问题探究新知,由于没有问题就没有发觉。 (2)为便于课堂操作和学问条理化,事先制作正弦函数、余弦函数性质表,让学生当堂完成表格的填写; (3)为节约课堂时间,制作幻灯片演示正、余弦函数图象和性质,也可以使教学更生动形象和连贯。 三、学法和力量培育 我发觉,很多学生的学习方法是:直接记住函数性质,在解题中套用结论,对结论的来源不理解,知其然不知其所以然,应用中不能变通和迁移。 本节的学习方法对后续内容的学习具有指导意义。为了培育学法,充分关注学生的可持续进展,教师要转换角色,站在初学者的位置上,和学生共同探究新知,共同体验数形结合的讨论方法,体验周期函数的讨论思路;帮忙学生实现学问的意义建构,帮忙学生发觉和总结学习方法,使教师成为学生学习的高级合作伙伴。 教师要做到: 授之以渔,与之合作而渔,使学生享受渔之乐趣。 因此 1.本节要教给学生看图象、找规律、思索提问、沟通协作、探究归纳的学习方法。 2.通过本课的探究过程,培育学生观看、分析、沟通、合作、类比、归纳的学习力量及数形结合(看图说话)的意识和力量。 四、教学程序 指导思想是:两条线索、三大特点、四个环节 (一)导入 引出数形结合思想方法,强调其含义和重要性,告知学生,本节课将利用数形结合方法来讨论,会使学习变得轻松好玩。 采纳这样的引入方法,目的是消除学生对函数学习的畏难心情,引起学生留意,也激起学生奇怪和兴趣。 (二)新知探究 主要环节,分为两个局部 教学过程如下: 第一局部师生共同讨论得出正弦函数的性质 1.定义域、值域 2.周期性 3.单调性 (重难点内容) 为了突出重点、克制难点,采纳以下手段和方法: (1)利用多媒体动态演示函数性质,充分表达数形结合的重要作用; (2)以层层深入,环环相扣的课堂提问,启发学生思维,反应课堂信息,使问题成为探究新知的线索和动力,随着问题的解决,学生的积极性将被调动起来。 (3)单调区间的探究过程是: 先在靠近原点的一个单调周期内找出正弦函数的一个增区间,由此表示出全部的增区间,表达从特别到一般的学问熟悉过程。 * 教师结合图象帮忙学生理解并强调 “距离”(“长度”)是周期的多少倍 为什么要这样强调呢? 由于这是对学问的一种意义建构,有助于以后理解记忆正弦型函数的相关性质。 4.对称性 设计意图: (1)由于奇偶性是特别的对称性,把握了对称性,简单得特别偶性,所以着重讲清对称性。表达了从一般到特别的学问再现过程。 (2)从正弦函数的对称性看到了数学的对称之美、和谐之美,表达了数学的审美功能。 5.最值点和零值点 有了对称性的理解,简单得出此性质。 其次局部学习任务转移给学生 设计意图: (1)通过把学习任务转移给学生,激发学生的主体意识和成就动机,利于学生作自我评价; (2)通过学生自主探究,赐予学生解决问题的自主权,促进生生沟通,利于教师作反应评价; (3)通过课堂教学构造的改革,提高课堂教学效率,最终使学生成为独立的学习者,这也符合建构主义的教学原则。 (三)稳固练习 补充和选作题表达了课堂要求的差异性。 (四)结课 五、板书说明 既要表达原则性又要考虑敏捷性 1.板书要根本表达整堂课的内容与方法,表达课堂进程,能简明扼要反映学问构造及其相互联系;能指导教师的教学进程、引导学生探究学问;同时不完全按课本上的呈现方式来编排板书。即表达系统性、程序性、概括性、指导性、启发性、制造性的原则;(原则性) 2.使用幻灯片帮助板书,节约课堂时间,使课堂进程更加连贯。(敏捷性) 六、效果及评价说明 (一)学问诊断 (二)评价说明 1.针对本班学生状况对课本进展了适当改编、细化,有利于难点克制和学生主体性的调动。 2. 依据课堂上师生的双边活动,作出适时调整、补充(反应评价);依据学生课后作业、提问等状况,反复修改并指导下节课的设计(反复评价)。 3. 本节课充分表达了面对全体学生、以问题解决为中心、注意学问的建构过程与方法、重视学生思想与情感的设计理念,积极地探究和实践我校的科研课题努力推动课堂教学构造改革。 通过这样的探究过程,信任学生能从中有所体会,对后续内容的学习和学生的可持续进展会有肯定的帮忙。盼望很久以后留在学生记忆中的不是学问本身,而是方法与思想,是学习的习惯和热忱,这正是我们教育工追求的结果 高中数学说课稿:正弦定理 大家好,今日我向大家说课的题目是正弦定理。下面我将从以下几个方面介绍我这堂课的教学设计。 一 教材分析 本节学问是必修五第一章解三角形的第一节内容,与初中学习的三角形的边和角的根本关系有亲密的联系与判定三角形的全等也有亲密联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的学问特别重要。 依据上述教材内容分析,考虑到学生已有的认知构造心理特征及原有学问水平,制定如下教学目标: 认知目标:在创设的问题情境中,引导学生发觉正弦定理的内容,推证正弦定理及简洁运用正弦定理与三角形的内角和定理解斜三角形的两类问题。 力量目标:引导学生通过观看,推导,比拟,由特别到一般归纳出正弦定理,培育学生的创新意识和观看与规律思维力量,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。 情感目标:面对全体学生,制造公平的教学气氛,通过学生之间、师生之间的沟通、合作和评价,调动学生的主动性和积极性,给学生胜利的体验,激发学生学习的兴趣。 教学重点:正弦定理的内容,正弦定理的证明及根本应用。 教学难点:正弦定理的探究及证明,已知两边和其中一边的对角解三角形时推断解的个数。 二 教法 依据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的进展为本,遵照学生的熟悉规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采纳探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作沟通为前提,以“正弦定理的发觉”为根本探究内容,以生活实际为参照对象,让学生的思维由问题开头,到猜测的得出,猜测的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓舞学生大胆猜测,积极探究,以及准时地鼓舞,使他们知难而进。另外,抓学问选择的切入点,从学生原有的认知水平和所需的学问特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的力量线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点 三 学法: 指导学生把握“观看猜测证明应用”这一思维方法,实行个人、小组、集体等多种解难释疑的尝试活动,将自己所学学问应用于对任意三角形性质的探究。让学生在问题情景中学习,观看,类比,思索,探究,概括,动手尝试相结合,表达学生的主体地位,增加学生由特别到一般的数学思维力量,形成了实事求是的科学态度,增加了锲而不舍的求学精神。 四 教学过程 第一:创设情景,也许用2分钟 其次:实践探究,形成概念,大约用25分钟 第三:应用概念,拓展反思,大约用13分钟 (一)创设情境,布疑激趣 “兴趣是的教师”,假如一节课有个好的开头,那就意味着胜利了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的局部,A=47°,B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮忙别人的热忱和学习的兴趣,从而进入今日的学习课题。 (二)探寻特例,提出猜测 1激发学生思维,从自身熟识的特例(直角三角形)入手进展讨论,发觉正弦定理。 2那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进展验证。 3让学生总牢固验结果,得出猜测: 在三角形中,角与所对的边满意关系 这为下一步证明树立信念,不断的使学生对结论的熟悉从感性逐步上升到理性。 (三)规律推理,证明猜测 1强调将猜测转化为定理,需要严格的理论证明。 2鼓舞学生通过作高转化为熟识的直角三角形进展证明。 3提示学生思索哪些学问能把长度和三角函数联系起来,继而思索向量分析层面,用数量积作为工具证明定理,表达了数形结合的数学思想。 4思索是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明 (四)归纳总结,简洁应用 1让学生用文字表达正弦定理,引导学生发觉定理具有对称和谐美,提升对数学美的享受。 2正弦定理的内容,争论可以解决哪几类有关三角形的问题。 3运用正弦定理求解本节课引入的三角形零件边长的问题。自己参加实际问题的解决,能激发学生学问后用于实际的价值观。 (五)讲解例题,稳固定理 1例1。在ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形. 例1简洁,结果为解,假如已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。 2 例2. 在ABC中,已知a=20cm,b=28cm,A=40°,解三角形. 例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟识把握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。 (六)课堂练习,提高稳固 1.在ABC中,已知以下条件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm 2. 在ABC中,已知以下条件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115° 学生板演,教师巡察,准时发觉问题,并解答。 (七)小结反思,提高熟悉 通过以上的讨论过程,同学们主要学到了那些学问和方法?你对此有何体会? 1用向量证明白正弦定理,表达了数形结合的数学思想。 2它表述了三角形的边与对角的正弦值的关系。 3定理证明分别从直角、锐角、钝角动身,运用分类争论的思想。 (从实际问题动身,通过猜测、试验、归纳等思维方法,最终得到了推导出正弦定理。我们讨论问题的突出特点是从特别到一般,我们不仅收获着结论,而且整个探究过程我们也把握了讨论问题的一般方法。在强调讨论性学习方法,注意学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。) (八)任务后延,自主探究 假如已知一个三角形的两边及其夹角,要求第三边,怎么办?发觉正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。 高中数学说课稿模板格式 一、说教材: 1、地位、作用和特点: _是高中数学课本第_册(_修)的第_章“_”的第_节内容。 本节是在学习了_之后编排的。通过本节课的学习,既可以对_的学问进一步稳固和深化,又可以为后面学习_打下根底,所以_是本章的重要内容。此外,_的学问与我们日常生活、生产、科学讨论_有着亲密的联系,因此学习这局部有着广泛的现实意义。本节的特点之一是:_; 特点之二是:_。 2、教学目标: 依据教学大纲的要求和学生已有的学问根底和认知力量,确定以下教学目标: (1)学问目标:A、B、C (2)力量目标:A、B、C (3)德育目标:A、B 3、教学的重点和难点: (1)教学重点: (2)教学难点: 二、说教法: 基于上面的教材分析,我依据自己对讨论性学习“启发式”教学模式和新课程改革的理论熟悉,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得效果。另外还留意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到留意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注意渗透数学思索方法(联想法、类比法、数形结合等一般科学方法)。让学生在探究学习学问的过程中,领悟常见数学思想方法,培育学生的探究力量和制造性素养。四是留意在探究问题时留给学生充分的时间,以利于开放学生的思维。固然这就应在处理教学内容时能够做到叶教师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序: 三、说学法: 学生学习的过程实际上就是学生主动猎取、整理、贮存、运用学问和获得学习力量的过程,因此,我觉得在教学中,指导学生学习时,应尽量避开单纯地、直露地向学生灌输某种学习方法。有效的能被学生承受的学法指导应是渗透在教学过程中进展的,是通过优化教学程序来增加学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。 1、培育学生学会通过自学、观看、试验等方法猎取相关学问,使学生在探究讨论过程中分析、归纳、推理力量得到提高。 本节教师通过列举详细事例来进展分析,归纳出_,并依据此学问与详细事例结合、推导出_,这正是一个分析和推理的全过程。 2、让学生亲自经受运用科学方法探究的过程。_主要是努力创设应用科学方法探究、解决问题情境,让学生在探究中体会科学方法,如在讲授_时,可通过_

    注意事项

    本文(高中数学说课稿:函数单调性与(小)值.docx)为本站会员(爷***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开