线性规划单纯形法例题资料.pdf
线性规划单纯形法例题吉林建筑工程学院城建学院人文素质课线性规划单纯形法例题【8页1.(4 1)】分别用图解法和单纯形法求解线性规划问题。max z 2x1 x23x15x215(s.t)6x1 2x2 24x1,x2 0在上述线性规划问题中,分别加入松驰变量x3,x4,得到该线性规划问题的标准型max z 2x1 x20 x3 0 x4153x15x2 x3(s.t)6x1 2x2x4 24x1,x2,x3,x4 0选择x3,x4为初始基变量,cj2100i15 5;324 4615 24min,436cB00XBb1524x1362x2521x3100 x4010 x3x4cj zj1 2(03 06)221(05 02)13 0(01 00)04 0(00 01)0所以选择x1为进基变量,x4为出基变量。1/4线性规划单纯形法例题cj2100i344121/334 min,3/44 1/3cB02XBb34x1010 x241/31/3x3100 x4-1/21/6-1/3x3x1cj zj1 2(00 21)021(04 21/3)1/33 0(01 20)04 0(01/2 21/6)1/3所以选择x2为进基变量,x3为出基变量。cj2100icB12XBb3/415/4x1010 x2100 x31/4-1/121/12x4-1/85/24-7/24x2x1cj zj1 2(10 21)021(11 20)03 0(11/4 21/12)1/124 0(11/8 25/24)7/2415 3T,),4415333故有:max z 2x1 x2 2444所以,最优解为X (x2,x1)T(2/4线性规划单纯形法例题【8页1.(4 2)】分别用图解法和单纯形法求解线性规划问题。max z 2x15x2x1122x 122(s.t)3x1 2x218x1,x2 0在上述线性规划问题中,分别加入松驰变量x3,x4,x5,得到该线性规划问题的标准型max z 2x1 x2 0 x3 0 x4 0 x5x3 4x12x2x4 24(s.t)x5183x1 2x2x1,x2,x3,x4,x5 0cj25000ix51000cB000XBb41218x11032x202225 5x31000 x40100 x3x4x54-012 6218 9212 18min,622cj zj1 2(0100 03)22 5(0002 02)53 0(0100 00)04 0(000100)05 0(010000)0所以选择x2为进基变量,x4为出基变量。3/4线性规划单纯形法例题cj25000ix50010cB050XBb466x110332 2x201 100 0 x31000 x401/2-15/2x3x2x54 416 06 2364min,231cj zj1 2(0150 03)22 5(0051 00)03 0(0150 00)04 0(0051/2 01)5/25 0(0150 01)0所以x1为进基变量,x5为出基变量cj25000ix5cB052XBb262x10010 0 x201 100 0 x31000 x41/31/21/311/611/6x31/301/3-2/3-2/3x2x1cj zj1 2(0050 21)02 5(0051 20)03 0(0150 20)04 0(01/351/2 21/3)11/65 0(01/350 21/3)2/3T单纯形表得计算结果表明:X*(2,6,2,0,0)为最优解。max z*2256 344/4