欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    排列组合典型例题.pdf

    • 资源ID:92215819       资源大小:394.12KB        全文页数:9页
    • 资源格式: PDF        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    排列组合典型例题.pdf

    典型例题一典型例题一例例 1 1 用 0 到 9 这 10 个数字可组成多少个没有重复数字的四位偶数?解法解法 1 1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选 3个来排列,故有A9个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一112个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有A4 A8 A8(个)3 没有重复数字的四位偶数有3112A9 A4 A8 A8 504 1792 2296个典型例题二典型例题二例例 2 2 三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?解:解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有A6种不同排法对于其中的每一种排法,363三个女生之间又都有A3对种不同的排法,因此共有A6 A3 4320种不同的排法6(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档这样共有 4 个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻由于五个男生排成一排有A5种不同排法,对于其中任意一种排法,从上述六个位353置中选出三个来让三个女生插入都有A6种方法,因此共有A5 A614400种不同的排法5(3)解法 1:(位置分析法)因为两端不能排女生,所以两端只能挑选5 个男生中的 2个,有A5种不同的排法,对于其中的任意一种排法,其余六位都有A6种排法,所以共有6A52 A614400种不同的排法26(4)解法 1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受171条件限制了,这样可有A5 A7种不同的排法;如果首位排女生,有A3种排法,这时末位就只能排男生,有A5种排法,首末两端任意排定一种情况后,其余 6 位都有A6种不同的排法,11617116这样可有A3 A5 A6种不同排法因此共有A5 A7 A3 A5 A6 36000种不同的排法826解法 2:3 个女生和 5 个男生排成一排有A8种排法,从中扣去两端都是女生排法A3 A6161 1/9 9jiangshan 整理种,就能得到两端不都是女生的排法种数826因此共有A8 A3 A6 36000种不同的排法典型例题三典型例题三例例 3 3 排一张有 5 个歌唱节目和 4 个舞蹈节目的演出节目单。(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?解:解:(1)先排歌唱节目有A5种,歌唱节目之间以及两端共有6 个位子,从中选 4 个放454入舞蹈节目,共有A6中方法,所以任两个舞蹈节目不相邻排法有:A5A643200.5(2)先排舞蹈节目有A4中方法,在舞蹈节目之间以及两端共有 5 个空位,恰好供 554个歌唱节目放入。所以歌唱节目与舞蹈节目间隔排列的排法有:A4A52880 种方法。4典型例题四典型例题四例例 4 4 某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法分析与解法分析与解法 1 1:6 六门课总的排法是A6,其中不符合要求的可分为:体育排在第一书有A5种排法,如图中;数学排在最后一节有A5556种排法,如图中;但这两种排法,都包括体育排在第一书数学排在最后一节,如图中,这种情况有A4种排法,因此符合条件的排法应是:654A6 2A5 A4 504(种)4典型例题五典型例题五例例 5 5现有3辆公交车、每辆车上需配1位司机和1位售票员 问3位司机和3位售票员,车辆、司机、售票员搭配方案一共有多少种?分析:分析:可以把3辆车看成排了顺序的三个空:,然后把3名司机和3名售票员分别填入因此可认为事件分两步完成,每一步都是一个排列问题3解:解:分两步完成第一步,把3名司机安排到3辆车中,有A3 6种安排方法;第二步3把3名售票员安排到3辆车中,有A3 6种安排方法故搭配方案共有33A3 A3 36种典型例题六典型例题六2 2/9 9jiangshan 整理例例 6 6下是表是高考第一批录取的一份志愿表如果有4所重点院校,每所院校有3个专业是你较为满意的选择 若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法?学校123111专业222解:解:填表过程可分两步第一步,确定填报学校及其顺序,则在4所学校中选出3所并加排列,共有A4种不同的排法;第二步,从每所院校的3个专业中选出2个专业并确定其222顺序,其中又包含三小步,因此总的排列数有A3 A3 A3种综合以上两步,由分步计数3222原理得不同的填表方法有:A4 A3 A3 A3 5184种3典型例题七典型例题七例例 5 57名同学排队照相(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?(4)若排成一排照,7人中有4名男生,女生不能相邻,有多少种不面的排法?3名女生,347解:(1)A7 A4 A7 5040种(2)第一步安排甲,有A3种排法;第二步安排乙,有A4种排法;第三步余下的5人排在5剩下的5个位置上,有A5种排法,由分步计数原理得,符合要求的排法共有115A3 A4 A51440种11(3)第一步,将甲、乙、丙视为一个元素,有其余4个元素排成一排,即看成5个元素的全排列问题,有A5种排法;第二步,甲、乙、丙三人内部全排列,有A3种排法由分步计53数原理得,共有A5 A3 720种排法53(4)第一步,4名男生全排列,有A4种排法;第二步,女生插空,即将3名女生插入4名男生之间的5个空位,这样可保证女生不相邻,易知有A5种插入方法由分步计数原理得,43符合条件的排法共有:A4 A51440种343 3/9 9jiangshan 整理典型例题八典型例题八例例 8 8从2、3、4、5、6五个数字中每次取出三个不同的数字组成三位数,求所有三位数的和解:解:形如22的数共有A4个,当这些数相加时,由“2”产生的和是A42;形如22的数也有A4个,当这些数相加时,由“2”产生的和是A4210;形如2的数也有A42个,当这些数相加时,由“2”产生的和应是A42100 这样在所有三位数的和中,由“2”产生的和是A42111同理由3、4、5、6产生的和分别是A43111,A44111,222111(23456)26640A45111,A46111,因此所有三位数的和是A4222典型例题九典型例题九例 9计算下列各题:m1nmAn1Anm(1)A;(2)A;(3);n1An121566(4)1!22!33!nn!(5)123n12!3!4!n!26解:解:(1)A151514 210;(2)A6 6!654321 720;(3)原式(n1)!1(n1)!1(nm)!(nm)!1;n1(m1)!(n1)!(nm)!(n1)!(4)原式(2!1)(3!2!)(4!3!)(n1)!n!(n1)!1;(5)n111123n1,n!(n1)!n!2!3!4!n!11111111111!2!2!3!3!4!(n1)!n!n!本题计算中灵活地用到下列各式:n!n(n1)!;nn!(n1)!n!;n111;使问题解得简单、快捷n!(n1)!n!4 4/9 9jiangshan 整理典型例题十典型例题十例例 1010a,b,c,d,e,f六人排一列纵队,限定a要排在b的前面(a与b可以相邻,也可以不相邻),求共有几种排法对这个题目,A、B、C、D四位同学各自给出了一种算式:A的算式是161111144 A2 A3 A4 A5)A4;C的算式是A6;A6;B的算式是(A12D的算式是C62 A44上面四个算式是否正确,正确的加以解释,不正确的说明理由解:解:A中很显然,“a在b前的六人纵队”的排队数目与“b在a前的六人纵队”排队数目相等,而“六人纵队”的排法数目应是这二者数目之和这表明:A的算式正确B中把六人排队这件事划分为a占位,b占位,其他四人占位这样三个阶段,然后用乘法求出总数,注意到a占位的状况决定了b占位的方法数,第一阶段,当a占据第一个位置时,b占位方法数是A5;当a占据第 2 个位置时,b占位的方法数是A4;当a占据第 5 个位置时,b占位的方法数是A1,当a,b占位后,再排其他四人,他们有A4种排法,可见B的算式是正确的1114C中A64可理解为从 6 个位置中选 4 个位置让c,d,e,f占据,这时,剩下的两个位置依前后顺序应是a,b的因此C的算式也正确这两个位置让a,b占据,显然,a,b占D中把 6 个位置先圈定两个位置的方法数C62,据这两个圈定的位置的方法只有一种(a要在b的前面),这时,再排其余四人,又有A4种排法,可见D的算式是对的说明:说明:下一节组合学完后,可回过头来学习D的解法4典型例题十一典型例题十一例例 1111八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?解法解法 1 1:可分为“乙、丙坐在前排,甲坐在前排的八人坐法”和“乙、丙在后排,甲坐在前排的八人坐法”两类情况应当使用加法原理,在每类情况下,划分“乙丙坐下”、“甲坐下”;“其他五人坐下”三个步骤,又要用到分步计数原理,这样可有如下算法:215215A4 A2 A5 A4 A4 A5 8 640(种)解法解法 2 2:采取“总方法数减去不命题意的所有方法数”的算法把“甲坐在第一排的八人坐法数”看成“总方法数”,这个数目是A4 A7在这种前提下,不合题意的方法是“甲坐第一排,且乙、丙坐两排的八人坐法”这个数目是A4C2 A3 A4 A5其中第一个因数11115175 5/9 9jiangshan 整理111A4表示甲坐在第一排的方法数,C2表示从乙、丙中任选出一人的办法数,A3表示把选出的这个人安排在第一排的方法数,下一个A4则表示乙、丙中沿未安排的那个人坐在第二排的方法数,A5就是其他五人的坐法数,于是总的方法数为1711115A4 A7 A4C2 A3 A4 A5 8 640(种)51说明:说明:解法 2 可在学完组合后回过头来学习典型例题十二典型例题十二例例 1212 计划在某画廊展出 10 幅不同的画,其中1 幅水彩画、4 幅油画、5 幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有()34524545145AA4 A5BA3 A4 A5CC3 A4 A5DA2 A4 A5解:解:将同一品种的画“捆”在一起,注意到水彩画不放在两端,共有A2种排列但 4245幅油画、5 幅国画本身还有排列顺序要求所以共有A2 A4 A5种陈列方式2应选 D说明:说明:关于“若干个元素相邻”的排列问题,一般使用“捆绑”法,也就是将相邻的若干个元素“捆绑”在一起,看作一个大元素,与其他的元素进行全排列;然后,再“松绑”,将被“捆绑”的若干元素,内部进行全排列本例题就是一个典型的用“捆绑”法来解答的问题典型例题十三典型例题十三例例 1313 由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数的个数共有()A210B300C464D600解法解法 1 1:(直接法):分别用1,2,3,4,5作十万位的排列数,共有5 A5种,所以其中个位数字小于十位数字的这样的六位数有5155 A5 300个265解法解法 2 2:(间接法):取0,1,5个数字排列有A6,而0作为十万位的排列有A5,所以其中个位数字小于十位数字的这样的六位数有165(A6 A5)300(个)2应选 B说明:说明:(1)直接法、间接法是解决有关排列应用题的两种基本方法,何时使用直接法或6 6/9 9jiangshan 整理间接法要视问题而定,有的问题如果使用直接法解决比较困难或者比较麻烦,这时应考虑能否用间接法来解(2)“个位数字小于十位数字”与“个位数字大于十位数字”具有对称性,这两类的六位数个数一样多,即各占全部六位数的一半,同类问题还有 6 个人排队照像时,甲必须站在乙的左侧,共有多少种排法典型例题十四典型例题十四例例1414 用1,2,3,4,5,这五个数字,组成没有重复数字的三位数,其中偶数共有()A24 个B30 个C40 个D60 个分析:分析:本题是带有附加条件的排列问题,可以有多种思考方法,可分类,可分步,可利用概率,也可利用本题所提供的选择项分析判断解法解法 1 1:分类计算将符合条件的偶数分为两类一类是2 作个位数,共有A4个,另一类是 4 作个位数,2也有A4个因此符合条件的偶数共有A4 A4 24个222解法解法 2 2:分步计算先排个位数字,有A2种排法,再排十位和百位数字,有A4种排法,根据分步计数原理,三位偶数应有A2 A4 24个解法解法 3 3:按概率算3用15这5个数字可以组成没有重复数字的三位数共有A5 60个,其中偶点其中的121222因此三位偶数共有60 24个55解法解法 4 4:利用选择项判断3用15这5个数字可以组成没有重复数字的三位数共有A5 60个其中偶数少于奇数,因此偶数的个数应少于30个,四个选择项所提供的答案中,只有A符合条件应选A典型例题十五典型例题十五1238例例 1515(1)计算A1 2A23A38A8(2)求Sn1!2!3!n!(n 10)的个位数字分析:分析:本题如果直接用排列数公式计算,在运算上比较困难,现在我们可以从和式中项的 特 点 以 及 排 列 数 公 式 的 特 点 两 方 面 考 虑 在(1)中,项 可 抽 象 为nnnnn1nnAn(n11)An(n1)AnnAn An1 An,(2)中,项为7 7/9 9jiangshan 整理n!n(n1)(n2)321,当n 5时,乘积中出现5 和 2,积的个位数为0,在加法运算中可不考虑n解:解:(1)由nAn(n1)!n!原式 2!1!3!2!9!8!9!1!362879(2)当n 5时,n!n(n1)(n2)321的个位数为 0,Sn1!2!3!n!(n 10)的个位数字与1!2!3!4!的个位数字相同而1!2!3!4!33,Sn的个位数字为 3说明:说明:对排列数公式特点的分析是我们解决此类问题的关键,比如:求证:123n11,我们首先可抓等式右边的2!3!4!(n1)!(n1)!nn11n1111,(n1)!(n1)!(n1)!(n1)!n!(n1)!左边11111111右边2!2!3!n!(n1)!(n1)!典型例题十六典型例题十六例例 1616用0、组成无重复数字的自然数,(1)可以组成多少个1、2、3、4、5共六个数字,无重复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?分析:分析:3位偶数要求个位是偶数且首位数字不能是0,由于个位用或者不用数字0,对确定首位数字有影响,所以需要就个位数字用0或者用2、一个自然数能被3整4进行分类除的条件是所有数字之和是3的倍数,本题可以先确定用哪三个数字,然后进行排列,但要注意就用与不用数字0进行分类解:解:(1)就个位用0还是用2、2、3、4中任取两4分成两类,个位用0,其它两位从1、数排列,共有A412(个),个位用2或4,再确定首位,最后确定十位,共有2244 32(个),所有3位偶数的总数为:1232 44(个)1、2、3、4、5中取出和为3的倍数的三个数,分别有下列取法:(0 1 2)、(2)从0、(0 1 5)、(0 2 4)、(0 4 5)、(1 2 3)、(1 3 5)、(2 3 4)、(3 4 5),前四组中有0,后四组中没有0,用它们排成三位数,如果用前4组,共有42 A216(个),如果用后8 8/9 9jiangshan 整理23四组,共有4 A3 24(个),所有被3整除的三位数的总数为1624 40(个)典型例题十七典型例题十七例例 1717一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻空位不相邻,共有几种坐法?分分 析析:对 于 空 位,我 们 可 以 当 成 特 殊 元 素 对 待,设 空 座 梯 形 依 次 编 号 为1、2、3、4、5、6、7先选定两个空位,可以在1、2号位,也可以在2、3号位共有六种可能,再安排另一空位,此时需看到,如果空位在1、2号,则另一空位可以在4、5、6、7号位,有4种可能,相邻空位在6、7号位,亦如此如果相邻空位在2、3号位,另一空位可以在5、6、7号位,只有3种可能,相邻空位在3、4号,4、5号,5、6号亦如此,所以必须就两相邻空位的位置进行分类 本题的另一考虑是,对于两相邻空位可以用合并法看成一个元素与另一空位插入已坐人的4个座位之间,用插空法处理它们的不相邻解答一:解答一:就两相邻空位的位置分类:若两相邻空位在1、2或6、7,共有24 A4192(种)坐法若两相邻空位在2、3,3、4,4、5或5、6,共有43 A4 288(种)不同坐法,所以所有坐法总数为192288 480(种)解答二:解答二:先排好4个人,然后把两空位与另一空位插入坐好的4人之间,共有4A4 A52 480(种)不同坐法44解答三:解答三:本题还可采用间接法,逆向考虑在所有坐法中去掉3个空位全不相邻或全部相邻的情况,4个人任意坐到7个座位上,共有A7种坐法,三个空位全相邻可以用合并法,直接将三个空位看成一个元素与其它座位一起排列,共有A5种不同方法三个空位全不相邻仍用插空法,但三个空位不须排列,直接插入4个人的5个间隔中,有A410种不同方454法,所以,所有满足条件的不同坐法种数为A7 A510A4 480(种)5449 9/9 9jiangshan 整理

    注意事项

    本文(排列组合典型例题.pdf)为本站会员(蓝****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开