高三数学函数知识学习方法总结400字范文(5篇).docx
-
资源ID:92264104
资源大小:38.06KB
全文页数:4页
- 资源格式: DOCX
下载积分:12金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
高三数学函数知识学习方法总结400字范文(5篇).docx
高三数学函数知识学习方法总结400字范文(5篇)高三数学函数知识学习方法总结400字范文高三数学函数知识学习方法总结400字范文1高考函数与方程思想的命题主要体现在三个方面是建立函数关系式,构造函数模型或通过方程、方程组解决实际问题;是运用函数、方程、不等式相互转化的观点处理函数、方程、不等式问题;是利用函数与方程思想研究数列、解析几何、立体几何等问题.在构建函数模型时仍然十分注重“三个二次”的考查.特别注意客观形题目,大题一般难度略大。高三数学函数知识学习方法总结400字范文2对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。对数函数的图形只不过的指数函数的图形的关于直线y=_的对称图形,因为它们互为反函数。(1)对数函数的定义域为大于0的实数集合。(2)对数函数的值域为全部实数集合。(3)函数总是通过(1,0)这点。(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。(5)显然对数函数无界。高三数学函数知识学习方法总结400字范文3指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得_能够取整个实数集合为定义域,则只有使得可以得到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。(2)指数函数的值域为大于0的实数集合。(3)函数图形都是下凹的。(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。(6)函数总是在某一个方向上无限趋向于_轴,永不相交。(7)函数总是通过(0,1)这点。(8)显然指数函数无界。高三数学函数知识学习方法总结400字范文4一般地,对于函数f(_)(1)如果对于函数定义域内的任意一个_,都有f(-_)=-f(_),那么函数f(_)就叫做奇函数。(2)如果对于函数定义域内的任意一个_,都有f(-_)=f(_),那么函数f(_)就叫做偶函数。(3)如果对于函数定义域内的任意一个_,f(-_)=-f(_)与f(-_)=f(_)同时成立,那么函数f(_)既是奇函数又是偶函数,称为既奇又偶函数。(4)如果对于函数定义域内的任意一个_,f(-_)=-f(_)与f(-_)=f(_)都不能成立,那么函数f(_)既不是奇函数又不是偶函数,称为非奇非偶函数。说明:奇、偶性是函数的整体性质,对整个定义域而言奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(_)比较得出结论)判断或证明函数是否具有奇偶性的根据是定义高三数学函数知识学习方法总结400字范文5复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判得以深化.具体要求是:1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数值和最小值的常用方法.3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.这部分内容的重点是对函数单调性和奇偶性定义的深入理解.函数的单调性只能在函数的定义域内来讨论.函数y=f(_)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.