欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    北师版九年级下册数学ppt课件:3.3-垂径定理.ppt

    • 资源ID:92269473       资源大小:1.27MB        全文页数:29页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    北师版九年级下册数学ppt课件:3.3-垂径定理.ppt

    *3.3 垂径定理第三章 圆2023/6/211.进一步认识圆,了解圆是轴对称图形.2.理解垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算、证明和作图问题.(重点)3.灵活运用垂径定理解决有关圆的问题.(难点)学习目标2023/6/22问题:你知道赵州桥吗?它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?导入新课导入新课情境引入2023/6/23问题:如图,AB是 O的一条弦,直径CDAB,垂足为P.你能发现图中有哪些相等的线段和劣弧?为什么?线段:AP=BP弧:AC=BC,AD=BD理由如下:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A与点B重合,AP与BP重合,AC和BC,AD与BD重合 OABDPC讲授新课讲授新课垂径定理及其推论一2023/6/24OABDCP试一试已知:在O中,CD是直径,AB是弦,ABCD,垂足为P.求证:AP=BP,AC=BC,AD=BD.证明:连接OA、OB、CA、CB,则OA=OB.即AOB是等腰三角形.ABCD,AP=BP,AC=BC.AD=BD,AOC=BOC.从而AOD=BOD.想一想:能不能用所学过的知识证明你的结论?2023/6/25u垂径定理OABCDP垂直于弦的直径平分这条弦,并且平分弦所对的弧.CD是直径,CDAB,(条件)AP=BP,AC=BC,AD=BD.(结论)归纳总结u推导格式:温馨提示:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.2023/6/26想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?是不是,因为没有垂直是不是,因为CD没有过圆心ABOCDEOABCABOEABDCOE2023/6/27垂径定理的几个基本图形:ABOCDEABOEDABO DCABOC归纳总结2023/6/28 如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?过圆心;垂直于弦;平分弦;平分弦所对的优弧;平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?思考探索2023/6/29 DOABEC举例证明其中一种组合方法已知:求证:CD CD是直径是直径 CDAB CDAB,垂足为,垂足为E E AE=BE AE=BE AC=BC AD=BD AC=BC AD=BD 证明猜想2023/6/210AC与BC相等吗?AD与BD相等吗?为什么?如图,AB是O的一条弦,作直径CD,使AE=BE.(1)CDAB吗?为什么?(2)OABCDE(2)由垂径定理可得AC=BC,AD=BD.(1)连接AO,BO,则AO=BO,又AE=BE,AOEBOE(SSS),AEO=BEO=90,CDAB.证明举例2023/6/211思考:“不是直径”这个条件能去掉吗?如果不能,请举出反例.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.u垂径定理的推论OABCD特别说明:圆的两条直径是互相平分的.归纳总结2023/6/212垂径定理的本质是:满足其中任两条,必定同时满足另三条(1)一条直线过圆心(2)这条直线垂直于弦(3)这条直线平分不是直径的弦(4)这条直线平分不是直径的弦所对的优弧(5)这条直线平分不是直径的弦所对的劣弧2023/6/213例1 如图,OEAB于E,若O的半径为10cm,OE=6cm,则AB=cm.OABE解析:连接OA,OEAB,AB=2AE=16cm.16一垂径定理及其推论的计算二cm.典例精析2023/6/214例2 如图,O的弦AB8cm,直径CEAB于D,DC2cm,求半径OC的长.OABECD解:连接OA,CEAB于D,设OC=xcm,则OD=x-2,根据勾股定理,得解得 x=5,即半径OC的长为5cm.x2=42+(x-2)2,2023/6/215例3:已知:O中弦ABCD,求证:ACBD.MCDABON证明:作直径MNAB.ABCD,MNCD.则AMBM,CMDM(垂直弦的直径平分弦所对的弧)AMCMBMDMACBD2023/6/216试一试:根据所学新知,你能利用垂径定理求出引入中赵州桥主桥拱半径的问题吗?垂径定理的实际应用三2023/6/217ABOCD解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C是弧AB的中点,CD就是拱高.AB=37m,CD=7.23m.AD=AB=18.5m,OD=OC-CD=R-7.23.2023/6/218解得R27.3(m).即主桥拱半径约为27.3m.R2=18.52+(R-7.23)2 2023/6/219 例4如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OECD,垂足为F,EF=90m.求这段弯路的半径.解:连接OC.OCDEF设这段弯路的半径为Rm,则OF=(R-90)m.根据勾股定理,得解得R=545.这段弯路的半径约为545m.2023/6/220 如图a、b,一弓形弦长为 cm,弓形所在的圆的半径为7cm,则弓形的高为_.C DCBOADOAB图a图b2cm或12cm 针对训练2023/6/221 在圆中有关弦长a,半径r,弦心距d(圆心到弦的距离),弓形高h的计算题,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.方法归纳涉及垂径定理时辅助线的添加方法弦a,弦心距d,弓形高h,半径r之间有以下关系:弓形中重要数量关系ABC DOhrd d+h=r OABC2023/6/2221.已知 O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为 .5cm2.O的直径AB=20cm,BAC=30,则弦AC=.10 3 cm当堂练习当堂练习2023/6/2233.如图,在O中,AB、AC为互相垂直且相等的两条弦,ODAB于D,OEAC于E,求证四边形ADOE是正方形DOABCE证明:证明:四边形四边形ADOE为矩形,为矩形,又又AC=AB AE=AD 四边形四边形ADOE为正方形为正方形.2023/6/224 4.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。你认为AC和BD有什么关系?为什么?理由:过O作OEAB,垂足为E,则AEBE,CEDE。AECEBEDE 即 ACBD.O.ACDBE解:AC=BD2023/6/2256.(分类讨论题)已知O的半径为10cm,弦MNEF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为 .14cm或2cm5.如图,在ABC中,已知ACB=130,BAC=20,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为_2023/6/2267.如图,某窗户由矩形和弓形组成,已知弓形的跨度AB=6m,弓形的高EF=2m,现设计安装玻璃,请帮工程师求出弧AB所在圆O的半径解:弓形的跨度AB=6m,EF为弓形的高,OEAB于F,AF=AB=3m,设AB所在圆O的半径为r,弓形的高EF=2m,AO=r,OF=r-2,在RtAOF中,由勾股定理可知:AO2=AF2+OF2,即r2=32+(r-2)2,解得r=m即,AB所在圆O的半径为 m2023/6/227拓展提升:如图,O的直径为10,弦AB=8,P为AB上的一个动点,那么OP长的取值范围 .3cmOP5cmBAOP2023/6/228垂径定理内容推论辅助线一条直线满足:过圆心;垂直于弦;平分弦(不是直径);平分弦所对的优弧;平分弦所对的劣弧.满足其中两个条件就可以推出其它三个结论(“知二推三”)垂直于弦的直径平分这条弦,并且平分弦所对的弧.两 条 辅 助 线:连半径,作弦心距构造Rt利用勾股定理计算或建立方程.基本图形及变 式 图 形课堂小结课堂小结2023/6/229

    注意事项

    本文(北师版九年级下册数学ppt课件:3.3-垂径定理.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开