平面问题有限元例题课件.ppt
计算计算实例实例 图3-14所示为一厚度t=1cm的均质正方形薄板,上下受均匀拉力q=106N/m,材料弹性模量为E,泊松比 ,不记自重,试用有限元法求其应力分量。例例例例3-13-1123421xy2myxq=10N/m解:解:.力学模型的确定.结构离散由于此结构长、宽远大于厚度,而载荷作用于板平面内,且沿板厚均匀分布,故可按平面应力问题处理,考虑到结构和载荷的对称性,可取结构的1/4来研究。该1/4结构被离散为两个三角形单元,节点编号,单元划分及取坐标如图3-15所示,其各节点的坐标值见表3-1。.求单元的刚度矩阵1)计算单元的节点坐标差及单元面积单元(i、j、m1,2,3)节点坐标xy表3-1返回返回返回返回2)计算各单元的刚度矩阵 先计算用到的常数代入可得:返回返回返回返回所以单元1的刚度矩阵为:123123返回返回返回返回由于单元2若按341对应单元1的123排码时,则这两个单元刚度矩阵内容完全一样,故有:341341返回返回返回返回4.组集整体刚度矩阵 由于Krs=KsrT,又单元1和单元2的节点号按123对应341,则可得:按刚度集成法可得整体刚度矩阵为:返回返回返回返回返回返回返回返回所以组集的整体刚度矩阵为:返回返回返回返回先求出各单元的应力矩阵S1、S2,然后再求得各单元的应力分量:6.计算各单元应力矩阵,求出各单元应力单元应力可看作是单元形心处的应力值。返回返回返回返回7.引入约束条件,修改刚度方程并求解根据约束条件:u1=v1=0;v2=0;u4=0和等效节点力列阵:,并代入刚度方程:,划去K中与0位移相对应的1,2,4,7的行和列,则刚度方程变为:求解上面方程组可得出节点位移为:所以返回返回返回返回例例例例3-23-2 图3-16所示为一平面应力问题离散化以后的结构图,其中图(a)为离散化后的总体结构,图(b)为单元1,2,3,4的结构,图(c)为单元3的结构。用有限元法计算节点位移、单元应变及单元应力(为简便起见,取泊松比 ,单元厚度t=1)。xy1234651234a3ijmaaa1,2,4ijm 图 3-16 计算实例2的结构图返回返回返回返回首先求确定各单元刚度所需的系数 及面积A,对于单元1,2,4有:解:解:对于单元3有:返回返回返回返回 其次,求出各单元的单元刚度矩阵。对于1,2,4单元,其单元刚度矩阵为:ijmijm返回返回返回返回 各单元的节点编号与总体结构的总编号之间的对应关系见表3-2。对于单元3,其单元刚度矩阵为:ijmijm返回返回返回返回 各单元节点号与总体节点号对应表各单元节点号与总体节点号对应表 单元号 1 2 3 4 节点号 节 点 总 编 号 I 1 2 2 3 j 2 4 5 5 m 3 5 3 6表表3-2返回返回返回返回 将各单元刚度矩阵按节点总数及相应的节点号关系扩充成12*12矩阵,分别如下:返回返回返回返回返回返回返回返回返回返回返回返回返回返回返回返回将扩充后的各单元刚度矩阵相加,得总体刚度矩阵K,即:返回返回返回返回所以结构总方程为:其中考虑到边界条件:返回返回返回返回用对角元乘大数法消除奇异性后的结构总体方程为:返回返回返回返回由以上方程解得的各节点的位移为:返回返回返回返回 然后将相应的节点位移代入公式,可分别求得各单元的应变和应力。对于单元1:返回返回返回返回 对于单元2:返回返回返回返回 对于单元3:返回返回返回返回 对于单元4:返回返回返回返回 作业:所示为一厚度t=1cm的均质正方形薄板,上下受三角形分布的拉力q=106N/m,材料弹性模量为E,泊松比 ,不记自重,试用有限元法求其应力分量。返回返回返回返回