欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    第一章全等三角形复习课课件ppt.ppt

    • 资源ID:92481207       资源大小:623KB        全文页数:32页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第一章全等三角形复习课课件ppt.ppt

    篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统全等三角形第一章复习课篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统全等概念:能够完全重合的两个 图形叫做全等形全等三角形概念:能够完全重合的两个三 角形叫做全等三角形概念回顾2、一个三角形经过平移、翻折、旋转,前后的图形全等。常见 的图形有:AF EDC BABCDEABCD平移 旋转翻折篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统3.注意:两个三角形全等在表示时通常把对应顶点的字母写在对应的位置上。ACBFED能否记作ABC DEF?应该记作ABC DFE原因:A与D、B 与F、C 与E 对应。篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统如图:ABC DEF3.全等三角形的性质:全等三角形的对应边相等,对应角相等A B=D E,A C=D F,BC=E FA=D,B=E,C=F(全等三角形的对应边相等)(全等三角形的对应角相等)篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统全等三角形的概念及其性质全等三角形的定义:能够完全重合的两个三角形叫做全等三角形,重合的点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。全等三角形性质:(1)对应边相等(2)对应角相等(3)周长相等(4)面积相等注意:“全等”的记法“”,全等变换:平移、旋转、翻转。篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统(1)将ABC沿直线BC平移,得到DEF,说出图中线段、角的关系并说明理由。ABCD EOAF EDC B(2)ABD ACE,若B25,BD6,AD4,你能得出ACE中哪些角的大小,哪些边的长度吗?3、全等三角形性质的运用篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统三角形全等的判定知识点三角形全等的证题思路:篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统归纳:两个三角形全等,通常需要3 个条件,其中至少要有1 组 对应相等。边篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统有公共边的,公共边是对应边.有公共角的,公共角是对应角.有对顶角的,对顶角是对应角.一对最长的边是对应边,一对最短的边是对应边.一对最大的角是对应角,一对最小的角是对应角.在找全等三角形的对应元素时一般有什么规律?篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统3、如图ABD EBC,AB=3cm,BC=5cm,求DE的长解:ABD EBCAB=EB、BD=BCBD=DE+EBDE=BD-EB=BC-AB=5-3=2cm篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统练习1:如图,AB=AD,CB=CD.求证:AC 平分BADADCB证明:在ABC和ADC中 AC=AC AB=AD CB=CD ABC ADC(SSS)BAC=DAC AC平分BAD篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统2、如图,D在AB上,E在AC上,AB=AC,B=C,试问AD=AE吗?为什么?E DC BA解:AD=AE理由:在ACD和ABE中 B=C AB=AC A=A ACD ABE(ASA)AD=AE篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统3、如图,OB AB,OC AC,垂足为B,C,OB=OCAO平分BAC吗?为什么?OCBA答:AO平分BAC理由:OB AB,OC AC B=C=90 在Rt ABO和Rt ACO中 OB=OC AO=AO Rt ABO Rt ACO(HL)BAO=CAO AO平分BAC 篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统4、如图,AC和BD相交于点O,OA=OC,OB=OD 求证:DC AB证明:在ABO和CDO中 OA=OC AOB=COD OB=OD ABO CDO(SAS)A=C DC ABAODBC篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统练习5:如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带那块去合适?为什么?BA篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统FEDCBA6、如图,已知ACEF,DE BA,若使ABC EDF,还需要补充的条件可以是 或 或或AB=EDAC=EF BC=DFDC=BF篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统7:已知 AC=DB,1=2.求证:A=D2 1DC BA证明:在ABC 和DCB 中 AC=DB 1=2 BC=CB ABC DCB(SAS)A=D 篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统8、如图,已知,AB DE,AB=DE,AF=DC。请问图中有那几对全等三角形?请任选一对给予证明。FEDCBAABF DECCBF FECABC DEF答:篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统9、如图,已知E在AB上,1=2,3=4,那么AC等于AD吗?为什么?4321 EDCB A解:AC=AD理由:在EBC和EBD中 1=2 3=4 EB=EB EBC EBD(AAS)BC=BD 在ABC和ABD中 AB=AB 1=2 BC=BD ABC ABD(SAS)AC=AD篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统10、已知,ABC和ECD都是等边三角形,且点B,C,D在一条直线上求证:BE=AD EDCAB变式:以上条件不变,将ABC绕点C旋转一定角度(大于零度而小于六十度),以上的结论还成立吗?证明:ABC和ECD都是等边三角形 AC=BC DC=EC BCA=DCE=60 BCA+ACE=DCE+ACE即BCE=DCA在ACD和BCE中 AC=BC BCE=DCA DC=EC ACD BCE(SAS)BE=AD篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此ADBC。C符合题意。说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。例题精析:连接例题篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统例2如图2,AECF,AD BC,ADCB,求证:ADF CBE篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统分析:已知ABC A1B1C1,相当于已知它们的对应边相等.在证明过程中,可根据需要,选取其中一部分相等关系.例3已知:如图3,ABC A1B1C1,AD、A1D1分别是ABC和A1B1C1的高.求证:AD=A1D1图3篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统例4:求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出已知求证后,再写出证明过程。说明:文字证明题的书写格式要标准。篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统例5、如图6,已知:A90,AB=BD,ED BC于D.求证:AEED提示:找两个全等三角形,需连结BE.图6篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统例6、如图:AB=AC,BD=CD,若B=28则C=;篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统如图:将纸片ABC 沿DE 折叠,点A 落在点F 处,已知1+2=100,则A=度;1.如图1:ABF CDE,B=30,BAE=DCF=20.求EFC的度数.练习题:2、如图2,已知:AD平分BAC,AB=AC,连接BD,CD,并延长相交AC、AB于F、E点则图形中有()对全等三角形.A、2B、3C4D、5C图1图2(800)篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统3、如图3,已知:ABC中,DF=FE,BD=CE,AF BC于F,则此图中全等三角形共有()A、5对B、4对C、3对D2对4、如图4,已知:在ABC中,AD是BC边上的高,AD=BD,DE=DC,延长BE交AC于F,求证:BF是ABC中边上的高.提示:关键证明ADC BFCB篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统5、如图5,已知:AB=CD,AD=CB,O为AC任一点,过O作直线分别交AB、CD的延长线于F、E,求证:E=F.提示:由条件易证ABC CDA从而得知BACDCA,即:AB CD.篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统知识梳理:1:什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?2:全等三角形有哪些性质?3:三角形全等的判定方法有哪些?能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。(1):全等三角形的对应边相等、对应角相等。(2):全等三角形的周长相等、面积相等。(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。SSS、SAS、ASA、AAS、HL(RT)篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统总结提高学习全等三角形应注意以下几个问题:(1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”

    注意事项

    本文(第一章全等三角形复习课课件ppt.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开