欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    4-2022年中考数学一轮复习之一次函数.doc

    • 资源ID:92521775       资源大小:4.89MB        全文页数:48页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    4-2022年中考数学一轮复习之一次函数.doc

    2022年中考数学一轮复习之一次函数一、选择题(共15小题)1(2021雁塔区校级四模)已知函数是正比例函数,且图象在第二、四象限内,则的值是A2BCD2(2021萧山区模拟)若实数,满足,且,则函数的图象可能是ABCD3(2021渭滨区一模)在平面直角坐标系中,若一个正比例函数的图象经过,两点,则,一定满足的关系式为ABCD4(2021汉台区一模)已知,则正比例函数的图象经过A第二、四象限B第二、三象限C第一、三象限D第一、四象限5(2021碑林区校级二模)若一个正比例函数的图象经过不同象限的两点,那么一定有A,B,C,D,6(2020阳谷县校级模拟),和,是一次函数图象上的两点,且,则与的大小关系是ABCD不确定7(2019荔湾区校级模拟)能表示如图所示的一次函数图象的解析式是ABCD8(2019建昌县一模)一次函数的图象如图所示,则的取值范围是ABCD9(2019红花岗区二模)如图,一次函数的图象经过点与,则关于的不等式的解集是ABCD10(2019陈仓区一模)直线关于轴对称的直线的解析式为ABCD11(2019灞桥区校级模拟)已知方程的解是,则函数的图象可能是ABCD12(2018昭阳区模拟)要使函数是一次函数,应满足A,B,C,D,13(2018陕西模拟)若点在正比例函数的图象上,则的值是ABC1D14(2013黔东南州)直线与直线的交点在第四象限,则的取值范围是ABCD15(2012呼和浩特)下面四条直线,其中直线上每个点的坐标都是二元一次方程的解是ABCD二、填空题(共10小题)16(2021河南)请写出一个图象经过原点的函数的解析式 17(2020青浦区二模)如果将直线平移,使其经过点,那么平移后的直线表达式是18(2020牡丹江)若是的一次函数且随的增大而减小,请你写出一个符合条件的函数解析式19(2020科尔沁区模拟)直线不经过第象限20(2019新宾县模拟)是一次函数,则的值是 21(2019南充模拟)如图,已知点的坐标为,直线与轴交于点,连接若,则的值为22(2019茅箭区模拟)若函数是正比例函数,则该函数的图象经过第 象限23(2019锦州一模)如图,在平面直角坐标系中,点,在直线与直线之间,则的取值范围是24(2018遵义模拟)已知正比例函数的图象经过点,那么这个函数的解析式为 25(2010龙岩)已知一次函数的图象如图,当时,的取值范围是三、解答题(共10小题)26(2021九龙坡区校级模拟)在画函数图象时,我们常常通过描点或平移或翻折的方法画函数图象小明根据学到的函数知识探究函数的图象与性质并利用图象解决问题小明列出了如表与的几组对应的值:0123311357(1)根据表格,直接写出,;(2)在平面直角坐标系中,画出该函数图象,并根据函数图象,写出该函数的一条性质;(3)当函数的图象与直线有两个交点时,直接写出的取值范围27(2021江西模拟)如图,在平面直角坐标系中,已知四边形是矩形,过点的直线与轴交于点,过点作直线交轴于点(1)求点的坐标(2)求直线的解析式28(2021拱墅区模拟)已知关于的一次函数为常数,且(1)当自变量1对应的函数值为5时,求的值;(2)对任意非零实数,一次函数的图象都经过点,请求点的坐标29(2021成都模拟)(1)计算:(2)在如图所示的坐标系中,分别作出函数和的图象,并利用图象直接写出方程组的解30(2021北京)在平面直角坐标系中,一次函数的图象由函数的图象向下平移1个单位长度得到(1)求这个一次函数的解析式;(2)当时,对于的每一个值,函数的值大于一次函数的值,直接写出的取值范围31(2021北碚区校级模拟)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程结合已有的学习经验,请画出函数的图象并探究该函数的性质(1)列表如下:1234563333写出表中,的值:,;(2)描点、连线,在所给的平面直角坐标系中画出该函数的图象,观察函数图象,写出该函数的一条性质:;(3)结合你所画的函数图象,直接写出不等式组的解(保留一位小数,误差不超过32(2020西城区校级模拟)如图,在中,点从点出发,沿折线运动,当它到达点时停止,设点运动的路程为点是射线上一点,连接设,(1)求出,与的函数关系式,并注明的取值范围;(2)补全表格中的值;12346以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点,并在的取值范围内画出的函数图象:(3)在直角坐标系内直接画出函数图象,结合和的函数图象,求出当时,的取值范围33(2019沙坪坝区校级二模)小岚根据学习函数的经验,对一个未知函数的图象与性质进行了探究已知:,其中,与成一次函数关系,当时,;当时,(1)根据给定的条件,求与的函数关系式;(2)写出函数与合适的几组对应值,并根据表中数据,在如图所示的平面直角坐标系中描点并画出函数图象:2(3)结合画出的函数图象,解决问题:直接写出关于的方程的实数解为(结果保留一位小数)34(2019花溪区一模)小辉根据学习函数的经验,对函数的图象与性质进行了探究,下面是小辉的探究过程,请补充完整(1)列表,找出与的几组对应值01231012其中,在平面直角坐标系中画出该函数的图象;(2)写出该函数的一条性质35(2019鄂州模拟)已知函数(1)为何值时,函数为正比例函数;(2)为何值时,函数的图象经过一,三象限;(3)为何值时,随的增大而减小?(4)为何值时,函数图象经过点?2022年中考数学一轮复习之一次函数参考答案与试题解析一、选择题(共15小题)1(2021雁塔区校级四模)已知函数是正比例函数,且图象在第二、四象限内,则的值是A2BCD【答案】【考点】正比例函数的定义;正比例函数的性质【分析】根据正比例函数的定义得出,进而得出即可【解答】解:函数是正比例函数,且图象在第二、四象限内,解得:,则的值是故选:【点评】此题主要考查了正比例函数的定义以及其性质,得出的符号是解题关键2(2021萧山区模拟)若实数,满足,且,则函数的图象可能是ABCD【答案】【考点】一次函数的图象【专题】一次函数及其应用;符号意识;模型思想【分析】先判断出是负数,是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与轴的交点的位置即可得解【解答】解:,且,的正负情况不能确定),函数的图象经过二、一、四象限故选:【点评】本题主要考查了一次函数图象与系数的关系,先确定出、的正负情况是解题的关键,也是本题的难点3(2021渭滨区一模)在平面直角坐标系中,若一个正比例函数的图象经过,两点,则,一定满足的关系式为ABCD【答案】【考点】一次函数图象上点的坐标特征;待定系数法求正比例函数解析式【专题】一次函数及其应用;运算能力【分析】设该正比例函数是,将、两点的坐标分别代入,通过整理求得,一定满足的关系式【解答】解:设该正比例函数是,则,故选:【点评】考查了待定系数法求正比例函数解析式和一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式4(2021汉台区一模)已知,则正比例函数的图象经过A第二、四象限B第二、三象限C第一、三象限D第一、四象限【答案】【考点】正比例函数的性质【专题】模型思想;一次函数及其应用【分析】根据两数相乘除,同号得正,异号得负可得,异号,则,根据正比例函数的性质可得结论【解答】解:,正比例函数的图象经过第二、四象限故选:【点评】此题考查正比例函数的图象,关键是知道根据正比例函数中,若则函数经过第二、四象限5(2021碑林区校级二模)若一个正比例函数的图象经过不同象限的两点,那么一定有A,B,C,D,【答案】【考点】正比例函数的图象;一次函数图象上点的坐标特征【分析】根据正比例函数的图象结合点、在不同的象限,即可得出、的符号是解题的关键【解答】解:正比例函数图象为中心对称图形,且正比例函数的图象经过不同象限的两点,与异号,和3异号,故选:【点评】本题考查了正比例函数的图象,根据正比例函数为中心对称图形找出、的符号是解题的关键6(2020阳谷县校级模拟),和,是一次函数图象上的两点,且,则与的大小关系是ABCD不确定【答案】【考点】一次函数的性质【专题】一次函数及其应用;推理能力【分析】利用一次函数的性质可得出值随值的增大而增大,再结合即可得出结论【解答】解:,值随值的增大而增大,又,故选:【点评】本题考查了一次函数的性质,牢记“,随的增大而增大;,随的增大而减小”是解题的关键7(2019荔湾区校级模拟)能表示如图所示的一次函数图象的解析式是ABCD【考点】:待定系数法求一次函数解析式;:一次函数的图象【专题】533:一次函数及其应用;68:模型思想【分析】首先设该一次函数解析式,再将两点的坐标代入,联立组成方程组求得、的值,则此时一次函数即可确定【解答】解:设该一次函数的解析式为,点、在此一次函数的图象上,解得,即该一次函数解析式为故选:【点评】本题考查了待定系数法求一次函数的解析式,一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设;(2)将自变量的值及与它对应的函数值的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式8(2019建昌县一模)一次函数的图象如图所示,则的取值范围是ABCD【考点】:一次函数图象与系数的关系【专题】533:一次函数及其应用【分析】根据一次函数图象与系数的关系得到,然后解不等式即可【解答】解:一次函数图象经过第一、三象限,故选:【点评】本题考查了一次函数图象与系数的关系:由于与轴交于,当时,在轴的正半轴上,直线与轴交于正半轴;当时,在轴的负半轴,直线与轴交于负半轴,时,的图象在一、二、三象限;,时,的图象在一、三、四象限;,时,的图象在一、二、四象限;,时,的图象在二、三、四象限9(2019红花岗区二模)如图,一次函数的图象经过点与,则关于的不等式的解集是ABCD【考点】:一次函数与一元一次不等式【分析】首先利用图象可找到图象在轴上方时,进而得到关于的不等式的解集是【解答】解:由题意可得:一次函数中,时,图象在轴上方,则关于的不等式的解集是,故选:【点评】此题主要考查了一次函数与一元一次不等式,关键是掌握数形结合思想认真体会一次函数与一元一次不等式之间的内在联系10(2019陈仓区一模)直线关于轴对称的直线的解析式为ABCD【答案】【考点】一次函数图象与几何变换【分析】找到原直线解析式上的关于相应的坐标轴对称的点【解答】解:可从直线上找两点:、这两个点关于轴的对称点是,那么这两个点在直线关于轴对称的直线上,则,解得:故选:【点评】本题考查了一次函数图象的几何变换,难度不大,要注意轴对称的性质11(2019灞桥区校级模拟)已知方程的解是,则函数的图象可能是ABCD【答案】【考点】一次函数与一元一次方程【专题】数形结合;几何直观;模型思想【分析】由于方程的解是,即时,所以直线经过点,然后对各选项进行判断【解答】解:方程的解是,经过点故选:【点评】本题考查了一次函数与一元一次方程:已知一次函数的函数值求对应的自变量的值的问题就是一元一次方程的问题12(2018昭阳区模拟)要使函数是一次函数,应满足A,B,C,D,【考点】:一次函数的定义【分析】根据、是常数,是一次函数,可得,可得答案【解答】解:是一次函数,故选:【点评】本题考查了一次函数,、是常数,的次数等于1是解题关键13(2018陕西模拟)若点在正比例函数的图象上,则的值是ABC1D【考点】:一次函数图象上点的坐标特征【专题】533:一次函数及其应用【分析】根究点在正比例函数的图象上,可以求得的值【解答】解:点在正比例函数的图象上,解得,故选:【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答14(2013黔东南州)直线与直线的交点在第四象限,则的取值范围是ABCD【答案】【考点】两条直线相交或平行问题【专题】计算题;运算能力【分析】联立两直线解析式求出交点坐标,再根据交点在第四象限列出不等式组求解即可【解答】解:联立,解得,交点在第四象限,解不等式得,解不等式得,所以,的取值范围是故选:【点评】本题考查了两直线相交的问题,解一元一次不等式组,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活运用15(2012呼和浩特)下面四条直线,其中直线上每个点的坐标都是二元一次方程的解是ABCD【答案】【考点】一次函数与二元一次方程(组【分析】根据两点确定一条直线,当,求出的值,再利用,求出的值,即可得出一次函数图象与坐标轴交点,即可得出图象【解答】解:,当,当,一次函数,与轴交于点,与轴交于点,即可得出符合要求,故选:【点评】此题主要考查了一次函数与二元一次方程的关系,将方程转化为函数关系进而得出与坐标轴交点坐标是解题关键二、填空题(共10小题)16(2021河南)请写出一个图象经过原点的函数的解析式 (答案不唯一)【答案】(答案不唯一)【考点】二次函数的性质;正比例函数的性质【专题】一次函数及其应用;推理能力【分析】图象经过原点,要求解析式中,当时,只要是正比例函数解即可【解答】解:依题意,正比例函数的图象经过原点,如(答案不唯一)故答案为:(答案不唯一)【点评】本题考查了正比例函数的性质和二次函数的性质,正比例函数的图象经过原点,二次函数的图象也可能经过原点,写出一个即可17(2020青浦区二模)如果将直线平移,使其经过点,那么平移后的直线表达式是【考点】:一次函数图象与几何变换【专题】533:一次函数及其应用;66:运算能力【分析】根据平移不改变的值可设平移后直线的解析式为,然后将点代入即可得出直线的函数解析式【解答】解:设平移后直线的解析式为,把代入直线解析式得,解得所以平移后直线的解析式为故答案为:【点评】本题考查了一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线平移时的值不变是解题的关键18(2020牡丹江)若是的一次函数且随的增大而减小,请你写出一个符合条件的函数解析式(答案不唯一)【答案】(答案不唯一)【考点】待定系数法求一次函数解析式;一次函数的性质【专题】一次函数及其应用;运算能力【分析】写一个一次函数,使其的值为负数即可【解答】解:若是的一次函数且随的增大而减小,请你写出一个符合条件的函数解析式(答案不唯一)故答案为:(答案不唯一)【点评】此题考查了待定系数法求一次函数解析式,以及一次函数的性质,熟练掌握一次函数的性质是解本题的关键19(2020科尔沁区模拟)直线不经过第三象限【考点】:一次函数图象与系数的关系【专题】533:一次函数及其应用;67:推理能力【分析】由,利用一次函数图象与系数的关系可得出直线经过第一、二、四象限,即直线不经过第三象限【解答】解:,直线经过第一、二、四象限,直线不经过第三象限故答案为:三【点评】本题考查了一次函数图象与系数的关系,牢记“,的图象在一、二、四象限”是解题的关键20(2019新宾县模拟)是一次函数,则的值是1【考点】:一次函数的定义【分析】先根据一次函数的定义列出关于的不等式组,求出的值【解答】解:是一次函数,解得故答案为:1【点评】本题考查的是一次函数的定义,即一般地,形如,、是常数)的函数,叫做一次函数21(2019南充模拟)如图,已知点的坐标为,直线与轴交于点,连接若,则的值为【考点】:一次函数图象上点的坐标特征【专题】533:一次函数及其应用【分析】求出、点坐标,判断是直角等腰三角形,得到,利用三角形的外角性质,得到,在直角三角形中求即可【解答】解:直线与轴交点为,与轴交点为,设直线与轴交点为,点的坐标为,在中,故答案为【点评】本题考查一次函数图象的性质,直角三角形的边角关系能够判断是等腰直角三角形,求出是解题的关键22(2019茅箭区模拟)若函数是正比例函数,则该函数的图象经过第一、三象限【考点】:正比例函数的定义【分析】根据一次函数定义可得:,且,计算出的值,再根据一次函数的性质进而可得答案【解答】解:由题意得:,且,解得:,则,则该函数的图象经过第一、三象限,故答案为:一、三【点评】此题主要考查了正比例函数定义和性质,关键是掌握正比例函数是一次函数,因此自变量的指数为123(2019锦州一模)如图,在平面直角坐标系中,点,在直线与直线之间,则的取值范围是【考点】:一次函数的性质【分析】计算出当在直线上时的值,再计算出当在直线上时的值,即可得答案【解答】解:当在直线上时,当在直线上时,则,故答案为:;【点评】此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等24(2018遵义模拟)已知正比例函数的图象经过点,那么这个函数的解析式为【考点】:待定系数法求正比例函数解析式【分析】根据待定系数法,可得正比例函数的解析式【解答】解:设正比例函数的解析式为,图象经过点,得,解得正比例函数的解析式为,故答案为:【点评】本题考查了待定系数法求正比例函数解析式,八点的坐标代入函数解析式得出值是解题关键25(2010龙岩)已知一次函数的图象如图,当时,的取值范围是【考点】一次函数的图象【分析】当时,图象在轴左侧,此时【解答】解:根据图象和数据可知,当即图象在轴左侧时,的取值范围是【点评】本题考查一次函数的图象,考查学生的分析能力和读图能力一次函数的图象有四种情况:当,函数的图象经过第一、二、三象限;当,函数的图象经过第一、三、四象限;当,时,函数的图象经过第一、二、四象限;当,时,函数的图象经过第二、三、四象限三、解答题(共10小题)26(2021九龙坡区校级模拟)在画函数图象时,我们常常通过描点或平移或翻折的方法画函数图象小明根据学到的函数知识探究函数的图象与性质并利用图象解决问题小明列出了如表与的几组对应的值:0123311357(1)根据表格,直接写出2,;(2)在平面直角坐标系中,画出该函数图象,并根据函数图象,写出该函数的一条性质;(3)当函数的图象与直线有两个交点时,直接写出的取值范围【答案】(1),;(2)图象见解答过程,性质不唯一,比如最小值为,时随的增大而增大等;(3)【考点】一次函数图象与系数的关系;一次函数图象上点的坐标特征【专题】数形结合;空间观念;作图题【分析】(1)将,代入即可得到答案;(2)描点画出图象,观察得到性质;(3)直线过定点,先求出函数的图象与直线有一个交点时的值,再由图象观察得到答案【解答】解:(1)将代入得,解得,将代入得,解得或,将代入得,解得或,故答案为:,;(2)图象如答图1,性质不唯一,比如最小值为,时随的增大而增大等;(3)如答图2,直线过点,函数的图象最低点,当直线过点和时,函数的图象与直线只有一个交点,由解得:,当直线直线与直线平行时,函数的图象与直线又只有一个交点,此时,根据图象可知时,函数的图象与直线有两个交点,故答案为:【点评】本题考查一次函数表达式及图象,准确作出图象是解答的关键27(2021江西模拟)如图,在平面直角坐标系中,已知四边形是矩形,过点的直线与轴交于点,过点作直线交轴于点(1)求点的坐标(2)求直线的解析式【答案】(1)(2)直线的解析式为【考点】一次函数图象上点的坐标特征;待定系数法求一次函数解析式;矩形的性质【专题】一次函数及其应用;运算能力【分析】(1)根据题意可得到点的坐标,代入直线表达式可求出直线表达式,进而求出点的坐标;(2)设直线的解析式为,由可知,再代入点的坐标即可【解答】解:(1)如图,直线过点,解得,直线的解析式为:,直线与轴交于点,令,可得,(2)设直线的解析式为,解得,直线的解析式为【点评】本题主要考查用待定系数法求一次函数表达式,一次函数与坐标轴的交点,掌握待定系数法是解题关键28(2021拱墅区模拟)已知关于的一次函数为常数,且(1)当自变量1对应的函数值为5时,求的值;(2)对任意非零实数,一次函数的图象都经过点,请求点的坐标【答案】(1);(2),【考点】一次函数图象上点的坐标特征【专题】运算能力;一次函数及其应用【分析】(1)把,代入即可求得;(2)当时,即可得到点,【解答】解:(1)把,代入为常数,且得,解得;(2)当时,对任意非零实数,一次函数的图象都经过点,【点评】本题考查了一次函数图象上点的坐标特征,图象上点的坐标特征适合解析式是解题的关键29(2021成都模拟)(1)计算:(2)在如图所示的坐标系中,分别作出函数和的图象,并利用图象直接写出方程组的解【答案】(1)(2)【考点】一次函数与二元一次方程(组;特殊角的三角函数值;零指数幂;实数的运算【专题】计算题;运算能力;几何直观;一次函数及其应用;一次方程(组及应用【分析】(1)直接利用特殊角的三角函数值、零指数幂以及负指数幂的性质分别化简得出答案(2)利用直线、的交点坐标直接得出答案【解答】解:(1);(2)画出函数的图象如图:如图所示:直线与的交点的坐标为,方程组的解是【点评】此题主要考查了一次函数与二元一次方程组的关系,正确画出函数图象是解题关键30(2021北京)在平面直角坐标系中,一次函数的图象由函数的图象向下平移1个单位长度得到(1)求这个一次函数的解析式;(2)当时,对于的每一个值,函数的值大于一次函数的值,直接写出的取值范围【答案】(1)(2)【考点】一次函数图象与系数的关系;一次函数图象与几何变换【专题】一次函数及其应用;几何直观;应用意识【分析】(1)根据平移的规律即可求得(2)根据点结合图象即可求得【解答】解:(1)函数的图象向下平移1个单位长度得到,一次函数的图象由函数的图象向下平移1个单位长度得到,这个一次函数的表达式为(2)把代入,求得,函数与一次函数的交点为,把点代入,求得,当时,对于的每一个值,函数的值大于一次函数的值,【点评】本题考查了一次函数图象与几何变换,一次函数与系数的关系,数形结合是解题的关键31(2021北碚区校级模拟)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程结合已有的学习经验,请画出函数的图象并探究该函数的性质(1)列表如下:1234563333写出表中,的值:0,;(2)描点、连线,在所给的平面直角坐标系中画出该函数的图象,观察函数图象,写出该函数的一条性质:;(3)结合你所画的函数图象,直接写出不等式组的解(保留一位小数,误差不超过【答案】(1)0,0,;(2)见解析,该函数图象关于轴对称;(3)或或或【考点】一次函数与一元一次不等式【专题】推理能力;操作型【分析】(1)将点的坐标代入函数表达式求解即可;(2)根据表格已知的点在平面直角坐标系中描点、连线,再进行观察即可得出其函数图象关于轴对称;(3)根据题意使得函数的图象在函数图象的上方,观察图象求解即可【解答】解:(1)将代入,得,将代入,得,将代入,得,;(2)函数图象如下图所示:(3)令,其图象如图2所示,由图可知不等式组的解是:或或或【点评】本题考查一次函数与一元一次不等式,解题的关键是根据点的坐标将函数的图象画出来32(2020西城区校级模拟)如图,在中,点从点出发,沿折线运动,当它到达点时停止,设点运动的路程为点是射线上一点,连接设,(1)求出,与的函数关系式,并注明的取值范围;(2)补全表格中的值;1234612以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点,并在的取值范围内画出的函数图象:(3)在直角坐标系内直接画出函数图象,结合和的函数图象,求出当时,的取值范围【考点】:一次函数的性质;:一次函数的图象【专题】533:一次函数及其应用【分析】(1)根据题意可以分别求得,与的函数关系式,并注明的取值范围;(2)根据(1)中的函数解析式,可以将表格补充完整,并画出相应的函数图象;(3)根据(1)中的函数解析式,可以画出的函数图象,然后结合图象可以得到当时,的取值范围,注意可以先求出时的值【解答】解:(1)由题意可得,当时,当时,即,;(2),当时,;当时,;当时,;当时,;当时,;故答案为:12,6,4,3,2,在的取值范围内画出的函数图象如右图所示;(3),则函数图象如右图所示,当时,得;当时,;则由图象可得,当时,的取值范围是【点评】本题考查一次函数的图象、反比例函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答33(2019沙坪坝区校级二模)小岚根据学习函数的经验,对一个未知函数的图象与性质进行了探究已知:,其中,与成一次函数关系,当时,;当时,(1)根据给定的条件,求与的函数关系式;(2)写出函数与合适的几组对应值,并根据表中数据,在如图所示的平面直角坐标系中描点并画出函数图象:2(3)结合画出的函数图象,解决问题:直接写出关于的方程的实数解为(结果保留一位小数)【考点】:正比例函数的性质;:一次函数的图象;:一次函数的性质;:正比例函数的图象【专题】53:函数及其图象【分析】(1)利用待定系数法求的解析式,根据,可得结论;(2)代入数值计算即可,并描点画图象;(3)根据(2)中的数据画图象,其交点的横坐标就是方程的解,注意【解答】解:(1)设,则,解得:,;(2)如图表:(3)由图象得:关于的方程的实数解为:;故答案为:【点评】本题考查了二次函数和一次函数的图象,函数自变量的取值范围,二次函数的性质,正确的画出函数的图形是解题的关键34(2019花溪区一模)小辉根据学习函数的经验,对函数的图象与性质进行了探究,下面是小辉的探究过程,请补充完整(1)列表,找出与的几组对应值01231012其中,2,在平面直角坐标系中画出该函数的图象;(2)写出该函数的一条性质【考点】:一次函数的图象;:一次函数的性质【专题】533:一次函数及其应用【分析】(1)将代入函数,即可求出的值为:2,利用五点画图法即可出画出相应的函数图象(2)根据图象可得到相应的性质【解答】解:(1)将代入函数,得故的值为:2,所画图象如图所示(2)根据图象可得,可得一条性质为:函数关于对称【点评】此题主要考查的是一次函数的变形,同时也考查了学生要注意归纳和总结的能力35(2019鄂州模拟)已知函数(1)为何值时,函数为正比例函数;(2)为何值时,函数的图象经过一,三象限;(3)为何值时,随的增大而减小?(4)为何值时,函数图象经过点?【考点】:正比例函数的定义【专题】11:计算题【分析】(1)根据正比例函数的定义得,然后解不等式即可;(2)根据正比例函数的性质得,然后解不等式即可;(3)根据正比例函数的性质得,然后解不等式即可;(4)利用一次函数图象上点的坐标特征,把代入中可求出的值【解答】解:(1)根据题意得,解得;(2)根据题意得,解得;(3)根据题意得,解得;(4)把代入得,解得,即为时,函数图象经过点【点评】本考查了正比例函数的定义:一般地,形如是常数,的函数叫做正比例函数,其中叫做比例系数也考查了一次函数的性质考点卡片1实数的运算(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行另外,有理数的运算律在实数范围内仍然适用【规律方法】实数运算的“三个关键”1运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等2运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算3运算律的使用:使用运算律可以简化运算,提高运算速度和准确度2零指数幂零指数幂:a01(a0)由am÷am1,am÷amamma0可推出a01(a0)注意:0013一次函数的定义(1)一次函数的定义:一般地,形如ykx+b(k0,k、b是常数)的函数,叫做一次函数(2)注意:又一次函数的定义可知:函数为一次函数其解析式为ykx+b(k0,k、b是常数)的形式一次函数解析式的结构特征:k0;自变量的次数为1;常数项b可以为任意实数一般情况下自变量的取值范围是任意实数若k0,则yb(b为常数),此时它不是一次函数4正比例函数的定义(1)正比例函数的定义:一般地,形如ykx(k是常数,k0)的函数叫做正比例函数,其中k叫做比例系数注意:正比例函数的定义是从解析式的角度出发的,注意定义中对比例系数的要求:k是常数,k0,k是正数也可以是负数(2)正比例函数图象的性质正比例函数ykx(k是常数,k0),我们通常称之为直线ykx当k0时,直线ykx依次经过第三、一象限,从左向右上升,y随x的增大而增大;当k0时,直线ykx依次经过第二、四象限,从左向右下降,y随x的增大而减小(3)“两点法”画正比例函数的图象:经过原点与点(1,k)的直线是ykx(k是常数,k0)的图象5一次函数的图象(1)一次函数的图象的画法:经过两点(0,b)、(,0)或(1,k+b)作直线ykx+b注意:使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确一次函数的图象是与坐标轴不平行的一条直线(正比例函数是过原点的直线),但直线不一定是一次函数的图象如xa,yb分别是与y轴,x轴平行的直线,就不是一次函数的图象(2)一次函数图象之间的位置关系:直线ykx+b,可以看做由直线ykx平移|b|个单位而得到当b0时,向上平移;b0时,向下平移注意:如果两条直线平行,则其比例系数相等;反之亦然;将直线平移,其规律是:上加下减,左加右减;两条直线相交,其交点都适合这两条直线6正比例函数的图象正比例函数的图象7一次函数的性质一次函数的性质:k0,y随x的增大而增大,函数从左到右上升;k0,y随x的增大而减小,函数从左到右下降由于ykx+b与y轴交于(0,b),当b0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴8正比例函数的性质正比例函数的性质9一次函数图象与系数的关系

    注意事项

    本文(4-2022年中考数学一轮复习之一次函数.doc)为本站会员(侯**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开