欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    DPS数据处理详解ppt课件.ppt

    • 资源ID:92523109       资源大小:2.23MB        全文页数:156页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    DPS数据处理详解ppt课件.ppt

    DPSDPS数据处理数据处理系统及应用系统及应用DPSDPS介绍介绍一、DPS 基本操作1.文件基本操作打开文件:可以打开DPS数据文件;文本文件;或Excel数据文件新建文件:保存文件:n n文件打印2.数据输入和复制1)数据输入建立新的DPS文件后,便可进行输入数据操作,DPS中以单元格为单位进行数据的输入,选中单元格即可输入数据。n nDPS中数据类型分为3类:数值型;字符型;日期型。DPS根据输入数据的格式自动判断数据属于什么类型。如日期型的数据输入格式为:“月/日/年”、“月-日-年”或“时;分;秒”。如输入的数据由数字与小数点构成,如输入的数据由数字与小数点构成,DPS自动将自动将其识别为数值型其识别为数值型。数据数据统计分析要求是数值数据数据统计分析要求是数值型数据。型数据。数值型数据显示为蓝色数值型数据显示为蓝色。n n字符型数据显示为黑色。点击工具栏的(设置单元格格式)按钮,弹出“单元格属性”对话框,可以改变当前数据块中的文字字体、字号、对齐方式等格式。2)数据复制)数据复制可以在不同单元格之间复制数据,也可以在不同工作表之间复制数据。可以一次复制一个数据,也可以同时复制一批数据。复制方法:(1)同word;(2)利用填充柄复制 即选中单元格数据,然后缓慢移动鼠标到单元格的右下角,当鼠标形状变为黑色实心“十”字后,拖动鼠标到目标单元格即可完成复制。3.数据删除,行列插入、删除数据删除,行列插入、删除数据删除数据删除:直接选中单元格数据敲Delete删除整行、整列插入、删除整行、整列插入、删除:用鼠标选中单元格,点击插入行按钮 ,会在该单元格上方插入一行。用鼠标选中单元格,点击插入列按钮 ,会在该单元格左方插入一列用鼠标选中要删除的行,点击删除行按钮 ,可删除该行。用鼠标选中要删除的列,点击删除列按 ,可删除该列。4.4.当前工作表规格定义当前工作表规格定义当前工作表规格定义当前工作表规格定义 DPSDPS工作表,每张表最大可为工作表,每张表最大可为255255列列6553565535行。在此行。在此范围内,工作表大小可根据需要自己设定。范围内,工作表大小可根据需要自己设定。设定方法:设定方法:点击工具栏里的设置表格行列数按钮点击工具栏里的设置表格行列数按钮 (或点击数据编辑(或点击数据编辑表格尺寸),表格尺寸),DPSDPS会根据当前工作会根据当前工作表的大小给出一个工作表大小的缺省值对话框,表的大小给出一个工作表大小的缺省值对话框,可以重新输入行列数,调整工作表的大小。可以重新输入行列数,调整工作表的大小。但如果输入行数小于已有文件存放数据的最如果输入行数小于已有文件存放数据的最大行数时大行数时,系统会提示如下。此时,应将行数增加。二、文本转换数值及字符串转换数值二、文本转换数值及字符串转换数值二、文本转换数值及字符串转换数值二、文本转换数值及字符串转换数值1.1.文本转换数值文本转换数值文本转换数值文本转换数值当从其他文本编辑器复制数据到当从其他文本编辑器复制数据到DPSDPS的电子表格时,会的电子表格时,会发现数据都是放在第一列里,而不是一个一个数据发现数据都是放在第一列里,而不是一个一个数据分布在单元格里。原因是原来数据之间是用空格隔开分布在单元格里。原因是原来数据之间是用空格隔开的,的,DPSDPS不能自动识别这种格式,只能以字符串的格式不能自动识别这种格式,只能以字符串的格式直接放进来。直接放进来。解决方法解决方法:点击数据编辑点击数据编辑“文本转换为数值文本转换为数值”,可将文本行里的各个数值分离开,放在后面各个单元可将文本行里的各个数值分离开,放在后面各个单元格里格里注意:复制过来的文本数据应该放在DPS系统工作表的第一列里面,否则,不能转换。2.字符串转换数值字符串转换数值 DPS中,数据应在“英文数字”方式下输入。如果忘记,在“全角、中文汉字输入方式下输入了字符型全角数字,这些全角型数字,在单元格里显示呈黑色。DPS系统不能对这些数据进行统计分析计算。如果输入了字符型全角数字,解决方法:点击数据编辑“字符串转换为数值”即可,三、数据统计分析及其建模基本步骤三、数据统计分析及其建模基本步骤1.数据统计分析基本步骤数据统计分析基本步骤 在DPS电子表格中输入数据 定义数据块 进入菜单选统计菜单,执行统计分析。定义数据块:将鼠标移至数据块块首,按下左键拖到块尾位置即可。2.数学模型分析基本步骤数学模型分析基本步骤1)在DPS电子表格中输入数据,在下方公式编辑区输入模型。2)先定义公式块 再定义数据块 点数学模型 单因变量模型参数估计 麦夸特法 当弹出“置初值并用空格隔开”对话框时选默认 选OK 结束 在DPS系统内,各因子都用x1、x2、xm表示,所有常数都用c1、c2、cm表示。所以,在数学模型分析时,要将方程中的自变量和因变量换成x1、x2、xm;将所有常数换成c1、c2、cm。四、图表处理四、图表处理DPS常用图表处理:常用图表有二维和三维图,可以绘条形图、折线图、阶梯图、饼图等。定义数据块后点击按钮 ,或点“数据分析”“常用图表”在图形选择对话框中选择图类型(2D、3D)下一步 显示图形 标出坐标轴代表的项目名称、符号、单位以及图题、图注、图例等。过程见下面图:得到如下所示图:选相应项作图。n nQ-Q图n n利用Q-Q图也可判断数据是否符合正态分布规律,即可作数据正态分布检验。n n在Q-Q图上,若所有数据散点分布在一条直线附近时,表明符合正态分布,否则,不符合正态分布。DPS数据处理系统及应用数据处理系统及应用n一、用户界面一、用户界面n n公式编辑区:用于数学模型分析时,数学公式的编辑、定义。n n电子表格区(即数据编辑器):用于数据编辑和数据计算。在此区内完成各种数据编辑和计算操作,输出统计结果。1系统主菜单n n 系统主菜单均有下拉菜单。当把待分析的数据编辑好并定义成数据矩阵块后,点击主菜单,在其下拉菜单中选择相应的操作即可。2主要主菜单、下拉菜单命令及应用n n1)数据分析菜单)数据分析菜单n nDPS 数据分析下拉菜单常用命令:n n基本参数估计基本参数估计n n数据分析数据分析基本参数估计基本参数估计n n试验资料经整理后,可以计算一系列的统计指标,以说明资料的特征和对资料进行进一步统计分析。n n例:现取甜菜块根蔗例:现取甜菜块根蔗糖含量糖含量100100个样本资料个样本资料中的中的4040个,做基本参个,做基本参数估计示例。数估计示例。n n步骤步骤:将数据在电子表格区将数据在电子表格区(即数据编辑器)输(即数据编辑器)输入后,入后,定义成数据定义成数据块,块,然后然后点数据分点数据分析析基本参数估基本参数估计计。就会立即得到基。就会立即得到基本参数:本参数:(见软件见软件)11.813.19.28.714.111.916.77.412.815.312.616.114.610.413.414.614.91512.112.610.112.410.811.311.612.27.513.411139.2715.114.912.614.113.410.66.511基本参数估计输出结果中的基本参数基本参数估计输出结果中的基本参数:(1)总和(sum):样本数的总和(2)均值(Mean):平均值,是分析计量资料的基本统计量,均值表示一组性质相同的观察值的平均水平。平均值包括:算术平均值、几何平均值、中位数。在基本参数估计中的均值是指算术平均值算术平均值。计算式为:算术平均值主要适用于描述具有对称分布资料的集中趋势。当数据为正态分布时常用算术平均值,在一组等精度的测量中,算术平均值为最佳值或最可信赖值。几何平均值:它是n个观测值的连乘积开n次方的根,记作G 它用于反映对数正态分布或近似对数分布资料以及等比级数资料的集中趋势。对一组测量数值取对数,所得图形的分布曲线呈对称分布时,常用几何平均值。中位数(值):中位数是指观测值由大到小或由小到大依次排列,居于中间位置的数据。记作Me (n为奇数)(n为偶数)在环境与资源研究中收集的数据,有时会比较分散,个别是离群较远,所以,对比较分散的数据往往要用中位数来表征平均特征。中位数不受极端数值的影响,在总体标志值差异很大时,具有较强的代表性。(3)平均偏差(adev)平均偏差是描述个体值间的变异,即观察值的离散度的指标之一。平均偏差较小,表示观察值围绕均数的波动较小,若平均偏差大,则观察值围绕均数的波动较大。平均偏差计算式为:(4)极差(Range)极差描述个体值间差异变异范围,极差越大,样本变异范围越大,反之,极差越小,样本变异范围越小。极差计算公式:(5)方差(VAR)Variance 方差是衡量观察值间的离散程度。方差较小,表示观察值围绕均数的波动较小。方差小时,其估计值就比较可靠,方差越小指标越稳定。方差计算式:(6)标准差(SD)std.Deviation 它描述个体观察值间的变异程度的大小,即观察值的离散程度。标准差较小,表示观察值围绕均数的波动较小,说明数据越集中。标准差越大,说明数据越分散。可用标准差表示试验精度。标准差小些好。SD计算公式:当观察值呈正态分布或近似正态分布时,可将均数及标准差同时写出。如(7)标准误(SE)std.Error 标准误差 它描述样本均数变异程度及抽样误差的大小,即样本统计量与总体参数的接近程度。SE叫做样本平均数的标准误差,简称为标准误。标准误小,表示抽样误差小,则统计量较稳定并与参数较接近。可将统计量及其标准误同时写出,如(8 8)变异系数)变异系数(CVCV)又称离散系数,是用于衡量一系列测定值的相对离又称离散系数,是用于衡量一系列测定值的相对离散程度的一种特征数。变异系数无单位。散程度的一种特征数。变异系数无单位。变异系数是一个相对变异度量变异系数是一个相对变异度量,它是样本的标准差与,它是样本的标准差与均数的比值。均数的比值。变异系数变异系数CVCV小了好。小了好。注意:注意:a.a.两种单位不同的样本之间作变异程度比较时,不两种单位不同的样本之间作变异程度比较时,不能用标准差,要用变异系数。能用标准差,要用变异系数。b.b.平均数不同的两个样本也不能用标准差进行比较,平均数不同的两个样本也不能用标准差进行比较,要用变异系数。要用变异系数。c.c.两个样本基数不一致或基数相差较大时,不能用两个样本基数不一致或基数相差较大时,不能用标准差,要用变异系数。标准差,要用变异系数。(9)正态性检验 正态性检验的目的就是要判定数据资料是否服从正态分布,或样本是否来自正态总体。正态性检验是检验各样本所属的总体参数差异显著性的前提条件。只有样本都来自正态总体或近似正态总体这个条件符合时,才能用t检验法和F检验法来检验各样本所属的总体参数差异显著性。就是说,在统计分析前先要对数据进行正态性检验,只有当符合正态分布时,才能进行进一步统计分析。基本参数估计时DPS正态性检验结果格式如下:正态性检验(100个甜菜块根蔗糖含量的结果)偏度 表示以平均值为中心的分布的不对称度。如果样本符合正态分布时,偏度参数(系数)等于0,此例中偏度系数为 0.6373,属于负偏态,P0),表示相对尖锐的分布。峰值为负时(0),表示分布相对平坦。峰值为0时,表示是标准的正态分布。异常值检验n n操作步骤:n n先将待检验数据输入 定义为数据块 数据分析 异常值检验 弹出异常数据剔除检验对话框 选一种检验分析方法和显著水平 确定。n n如果有异常数据,则如果有异常数据,则异常数据就会变为红色或异常数据就会变为红色或系统有具体提示系统有具体提示。n n检验方法有:检验方法有:3S3S法(法(33法)法)数据要服从正态分布数据要服从正态分布 狄克松(狄克松(DixsonDixson)法)法 格拉布斯(格拉布斯(GrubbsGrubbs)法)法数据要服从正态分布数据要服从正态分布例例 对某物理量测量对某物理量测量15次数据如下次数据如下,检检查有无异常值查有无异常值.序号x序号x10.4290.420.43100.4330.4110.4240.43120.4150.42130.3960.43140.3970.39150.480.32)试验设计菜单)试验设计菜单n n 完全随机及随机区组设计 完全随机分组(用于产生随机数)单因素随机设计 二因素随机设计n n正交设计 30个正交表 2水平互作设计n n正交回归组合设计 3)试验统计菜单)试验统计菜单n n次数分布及平均数比较 n n完全随机设计 n n正交实验方差分析n n 二次回归(正交)旋转组合设计n n二次通用旋转组合设计n n 二次多项式回归分析n n新版本里几个设计,数据处理通用了新版本里几个设计,数据处理通用了:n n二次通用组合设计、n n二次正交旋转设计、n n二次正交回归设计,n n做统计分析时如果不做区组,都在实验统计下拉菜单里的实验优化分析实验优化分析二次多项式回归分析操二次多项式回归分析操作。作。4)多元分析)多元分析回归分析:n n 线性回归 n n二次多项式逐步回归n n多因子及互作项逐步回归n n多因子及平方项逐步回归 5)数学模型)数学模型n n一元非线性回归模型(用于一元非线性回归)n n单因变量模型参数估计 n n二、二、t 检验检验n n主要用于检验两个处理平均数差异是否显著。条件是要主要用于检验两个处理平均数差异是否显著。条件是要求资料呈正态分布或近似正态分布。求资料呈正态分布或近似正态分布。n n1 1)单样本均数与总体均数比较的)单样本均数与总体均数比较的)单样本均数与总体均数比较的)单样本均数与总体均数比较的t检验检验检验检验n n用于检验一个样本均数与总体均数差异是否显著。用于检验一个样本均数与总体均数差异是否显著。用于检验一个样本均数与总体均数差异是否显著。用于检验一个样本均数与总体均数差异是否显著。n n例例 随机测得随机测得7 7个儿童身高为:个儿童身高为:137137,133133,136136,129129,133133,130130,131cm,131cm,已知该班身高总体平均数为已知该班身高总体平均数为131cm131cm,检验,检验样本均数与总体均数差异是否显著。样本均数与总体均数差异是否显著。n n 步骤:步骤:n n按行输入按行输入7 7个数,第二行输入总体平均数个数,第二行输入总体平均数定义数定义数据块据块 选试验统计选试验统计 单样本平均数检验单样本平均数检验在弹出在弹出的对话框中输入总体平均数的对话框中输入总体平均数131OK131OK137133136129133130131131n n2)配对样本配对样本t检验检验n n用于配对试验计量资料的比较n n步骤:n n按行输入数据定义数据块 选试验统计 两样本比较配对两处理t检验输出结果n n例:进口仪器:32 40 27 37 32 35 28 43 40 41 41 35 49 34 mmn n 国产仪器:43 44 30 34 30 31 26 26 42 40 42 43 37 43 mmn n3 3)两样本均值差异)两样本均值差异)两样本均值差异)两样本均值差异t t检验检验检验检验n n方法:方法:n n (1 1)将两个处理的样本观察值分两行输入,并定义)将两个处理的样本观察值分两行输入,并定义成数据块。成数据块。n n (2 2)试验统计)试验统计两样本比较两样本比较student student t t 检验检验输出输出结果结果n n例例处理处理1 160 160 200 160 200 170 150 2101 160 160 200 160 200 170 150 210处理处理2 170 270 220 250 270 290 270 2302 170 270 220 250 270 290 270 230 160 160 200 160 200 170 150 210 160 160 200 160 200 170 150 210 170 270 220 250 270 290 270 230 170 270 220 250 270 290 270 230 Jrj Jrj n n4)小样本均值差异检验)小样本均值差异检验n n方法:n n (1)输入数据,并定义成数据块n n (2)试验统计两样本比较样本较少时平均数差异检验输出(显示)结果。n n例n n 处理1 0.96 1.14 1.59n n 处理2 1.29 1.31 1.6 1.88 2.21 2.27n n0.96 1.14 1.59n n1.29 1.31 1.6 1.88 2.21 2.27三、试验设计及统计分析三、试验设计及统计分析n n 一)全面试验设计一)全面试验设计n n(一)单因素完全随机设计(一)单因素完全随机设计n n1试验方案设计试验方案设计n n试验只考察一个主要因素,它有试验只考察一个主要因素,它有a个水平个水平A1,A2,Aa,比较这比较这a个水平对试验指标的影响,称个水平对试验指标的影响,称为单因素试验。单因素试验中,只考虑对指标影为单因素试验。单因素试验中,只考虑对指标影响最大的因素,其余因素固定不变。响最大的因素,其余因素固定不变。n n假定假定a个水平均重复个水平均重复m次,则总共要进行次,则总共要进行am次试次试验。如果验。如果a个水平试验的实施顺序完全按随机原个水平试验的实施顺序完全按随机原则确定则确定,这种试验设计方法称为完全随机化单因完全随机化单因素试验设计。素试验设计。n例1 在无酒精啤酒的研究中,为了了解麦芽的浓度对发酵液中双乙酰生成量的影响。在发酵温度为7,非糖比为0.3,二氧化碳压力为0.06MPa,发酵时间为6天的试验条件下,考察麦芽汁浓度改变对双乙酰生成量的影响。n解:固定因素为:温度7;非糖比0.3,CO2压力0.06MPa;发酵时间6天。n考察因素为:麦芽汁浓度A,n因素A水平:A1=6%,A2=10%,A3=12%n每个水平重复次数:5次n试验指标:双乙酰含量mg/L(按专业要求此指标要低些)n目的:寻找适宜的麦芽汁浓度。n n本试验中水平a=3,重复次数m=5,n n总计进行试验次数 am=35=15次n n15次试验完全按随机顺序进行。n n从随机数表上按任意方向从某数开始读取15个数,再将15个随机数字从小到大编号,这个编号就是进行试验时的顺序号。n n如随机数:n n根据随机数安排的单因素试验方案如下表n n表1 完全随机化单因素试验方案n n2试验试验n n按表1方案具体完成试验,测得每次试验所得的双乙酰含量,得试验结果(数据)如下表n n表2 试验结果(双乙酰含量mg/L)用用DPS系统产生随机数:系统产生随机数:n n为安排试验中所有试验次数的试验随机顺序,DPS系统操作步骤如下:n n试验设计完全随机及随机区组设计完全随机分组弹出“完全随机试验设计”对话框输入“实验样本数”和“分组组数”确认后就输出要试验的次数的随机顺序。n n例如:一个试验共要作10次。在“试验样本数中”输入10,“分组织数”中也输入10,确认后会给出随机数顺序号如下:3统计分析n n1)方差分析方法)方差分析方法n n试验目的:是要知道因素各水平之间是否试验目的:是要知道因素各水平之间是否有差异?如有差异,哪一个水平最好?因有差异?如有差异,哪一个水平最好?因此,需对试验结果进行方差分析。方差分此,需对试验结果进行方差分析。方差分析的实质是检验多个正态总体均值是否相析的实质是检验多个正态总体均值是否相等。等。n n方差分析方法:借助方差分析方法:借助F检验来分析、判断各检验来分析、判断各因素、水平显著差异的的方法。因素、水平显著差异的的方法。n n 一般,不管试验顺序如何,对一般,不管试验顺序如何,对a个水平,每个水平,每个水平重复个水平重复m次试验的单因素试验,试验结次试验的单因素试验,试验结束后,试验数据整理及计算表格式如下表。束后,试验数据整理及计算表格式如下表。表3 单因素方差分析试验资料整理表 n n关于检验的假设:n n在方差分析中,当处理试验数据和检查各个处理(水平)是否有显著性差异时,总是先建立零假设(原假设、或无效假设):n n原假设为:各均数不存在差异n n备择假设为:各均数存在差异n n进行F检验时,将计算的F值与临界值 F相比较,若F F则拒绝接受H0,即试验中各个处理(水平)间有真实差异存在(存在显著差异)。n n若F F则接受H0,即各处理间无显著差异。n n一般,方差分析结果多以表格形式给出。根据平方和与相应的自由度,可计算出相应的均方,并列出方差分析表。表4 单因素完全随机设计方差分析表检验结果判定:检验结果判定:n n如何根据给出的p值来进行统计推断?n nDPS在统计分析之后,多数情况下会给出假设检验中的p值。p值就是传统所说的水平(显著水平),p值是接受各处理间(各均值间)存在显著差异时可能犯错误的概率。n nP值可以精确地告诉我们检验结果的显著水平,而不用再重复采用不同的水平。根据p 值进行统计推断常用标准是:n n如果0.01p0.05,则结果显著。n n如果0.001p0.01,则结果极显著。n n如果p0.001,则结果是极高地显著。n n如果p0.05,则结果被认为没有统计显著性。n n一般来说,给出p值后,如果:n np0.05,则拒绝H0,即结果有统计学显著性(有 显著差异);n n p0.01时 有极显著差异n n如果p0.05 ,则接受H0,即结果没有统计学显著性(无显著差异)。n n2)用)用DPS对单因素试验资料分析步骤对单因素试验资料分析步骤n n数据输入格式数据输入格式n n在数据编辑器中按规定格式将试验资料整理表中的数据输入。对a个水平,m个重复的数据资料,其数据排列顺序为:n n将11am待分析数据定义成数据块。n n点试验统计完全随机设计单因素试验统计分析在弹出的“方差分析”参数设置对话框中设置好三种参数 点确定即可得结果n n 分析所得结果关于数据转换方式关于数据转换方式n实验研究中,有时会遇到一些样本资料,其所属总体特征与方差分析的基本假定不符,对这些资料作方差分析前必须经过适当的转换来变更度量尺度,即试验资料作方差分析时,如资试验资料作方差分析时,如资料基本参数估计结果与方差分析基本料基本参数估计结果与方差分析基本假定不符时假定不符时,就要作数据转换,就要作数据转换,常用的数据转换方式有4种。n n1.不转换不转换n n当样本符合正态分布时,数据不需转换。n n2.平方根转换平方根转换n n有些取值小的间断数据,例如单位面积上的杂草数、每一视野中的细菌数等,其取值的低限为0,高限可能相当大。这种变量的分布往往不成正态分布,而其处理的平均数往往与方差成比例,对这样的数据资料作平方根转换往往很有效。转换公式为:Y=(Y)1/2 。n n平方根转换的两种情况:当大多数观测值 10,并出现0时,转换公式 Y=(Y+1)1/2 当大多数观测值 10,并出现0时,转换公式 Y=(Y+0.5)1/2 n n平方根转换的作用:主要是减小了极端大值对方差的影响,大大改善了各处理误差方差的同质性(或称齐性),即12=22=n2 (即使各误差方差趋于相近)n n3.对数转换对数转换n n若有些数据数据出现明显偏态分布时(左偏或右偏),可用对数转换使趋向正态分布。因为对数转换的作用是将普通尺度变为对数尺度,于是向右(向左)侧延伸的钟形图的长尾被缩短,使分布趋向正态分布。转换公式为:Y=LgY 或 Y=LnY 当观测值较小时 Y=Lg(Y+1)或 Y=Ln(Y+1)n n4.倒数转换倒数转换n n当方差与平均数的平方成比例时,可采用倒数转换,使资料符合方差分析的基本假定。n n Y=1/Y关于多重比较关于多重比较n n方差分析中得出的均值差异显著性(检验)是一个整体方差分析中得出的均值差异显著性(检验)是一个整体概念,当方差分析为显著时,说明在各处理所有均值中概念,当方差分析为显著时,说明在各处理所有均值中至少有两个有显著差异,方差分析结果并不能判明各个至少有两个有显著差异,方差分析结果并不能判明各个处理的均值两两之间都有显著的差异。处理的均值两两之间都有显著的差异。主要原因是某些处理间的差异十分突出,从而掩盖主要原因是某些处理间的差异十分突出,从而掩盖了某些处理之间不显著的差异,使总的结论为差异显著。了某些处理之间不显著的差异,使总的结论为差异显著。因此,为了考察各个均数两两之间差异的显著性,就要因此,为了考察各个均数两两之间差异的显著性,就要对各个均数进行比较,这种比较称为多重比较。对各个均数进行比较,这种比较称为多重比较。n n多重比较目的:考察各个均值两两之间是否相等,如相多重比较目的:考察各个均值两两之间是否相等,如相等无差异,如不等就有差异。等无差异,如不等就有差异。n n一般来说,只有方差分析表中的显著性水平一般来说,只有方差分析表中的显著性水平P P值小于等值小于等于于0.050.05时,才能进一步做多重比较。时,才能进一步做多重比较。n n3)DPS单因素数据处理实例单因素数据处理实例n n例1 麦芽汁浓度对双乙酰含量的影响,试验结果(双乙酰含量mg/L)n n因素A:A1=6%,A2=10%,A3=12%n n方差分析结果方差分析结果n n(见软件)。(见软件)。重复A10.270.280.250.280.25A20.210.20.180.190.22A30.320.340.30.320.31例例2:四种小麦,欲测单株粒重,均重复:四种小麦,欲测单株粒重,均重复10次,次,分析不同品种单株粒重有无差异。分析不同品种单株粒重有无差异。实验结果如下表。实验结果如下表。水平 重复品种120.8 34.5 42.7 28.7 43.1 30.9 30.7 41.5 30.8 23.4品种220.2 23.427 31.733 24.7 19.6 27.3 25.5 22.9品种34146 49.1 29.434 24.6 43.6 29.5 22.7 30.2品种425.9 21.9 24.4 32.1 28.6 13.7 26.2 26.9 22.2 19.7(二)二因素无重复完全随机设计(二)二因素无重复完全随机设计(组内无重复)(组内无重复)n n1方差分析方差分析n n如果试验要同时考察因素A和B对试验结果(指标)的影响,因素A取A1,A2,A a共a个水平,因素B取B1,B2,B b共b个水平。在方案设计时,因素和水平要依研究问题确定。n nA和B两因素的每种水平搭配A i iBj j (i =1,2,a;j=1,2,b)各进行一次独立试验,共进行ab次试验。其试验设计及数据排列如下表n n2二因素无重复二因素无重复DPS分析步骤分析步骤n n1)按二因素无重复完全随机设计方案及数据表 的格式输入数据 n n2)将待分析数据定义为数据块n n3)选试验统计完全随机设计二因素无重复试验统计分析不转换(或转换)OK选多重比较方法确定可得分析结果。3二因素无重复随机设计DPS分析实例n n例例1 1 在在5 5种不同温度研究一种微生物的生长和温度的关种不同温度研究一种微生物的生长和温度的关系,在接种后不同天数测量微生物的生长速度。系,在接种后不同天数测量微生物的生长速度。n n取温度和生长天数作为考察因素。取温度和生长天数作为考察因素。n n温度(温度(A A):取):取5 5个水平个水平 17.5 21.0 24.5 27.5 30.517.5 21.0 24.5 27.5 30.5n n天数(天数(B B):取):取4 4个水平个水平 1 1天天 2 2天天 3 3天天 4 4天天n n分析结果分析结果(软件)软件)温度(A)B(接种后天数)1天2天3天4天A1(17.5)0.31.32.63.5A2(21)0.31.72.94A3(24.5)0.936.67.5A4(27.5)1.74.899A5(30.5)1.22.75.27.4(三)二因素有重复完全随机设计(三)二因素有重复完全随机设计n n1方案及数据表方案及数据表n n假设试验包含A,B两个试验因素,A因素有a个水平(处理),B因素有b个水平(处理)。则两个因素共有ab个水平组合,而两因素的每个水平组合有n个观察值,即重复n次。所以,整个试验共有abn个观察值。abn次试验的先后顺序完全按随机方式确定,这就是完全随机化双因素试验设计方法。DPSDPS系统二因素重复试验方案及数据格式系统二因素重复试验方案及数据格式系统二因素重复试验方案及数据格式系统二因素重复试验方案及数据格式2方差分析方差分析n n ddddn n3DPS分析实例(二因素重复)及步骤分析实例(二因素重复)及步骤n n输入数据,定义数据块n n点试验统计完全随机设计二因素有重复试验统计分析在弹出的“输入各处理个数(水平数)”对话框中输入A因素水平数(a)和B因素水平数(b)弹出转换对话框选“不转换(或转换)”OK在多重比较方法选择中选一多重比较方法确定可得分析结果n n分析结果n n4DPS二因素重复试验分析实例二因素重复试验分析实例n n例:用三种压力(A1,A2,A3)和四种温度(B1,B2,B3,B4)组成试验方案,得到的产品得率资料如下表。试分析压力和温度以及它们的交互作用对产品得率有无显著影响(=0.05)n n结果(软件)A(压力)B(温度)重复A1B1524339B2483739B3344238B4455842A2B1414753B2504130B3363944B4444660A3B1493842B2364847B3374032B4435641二)正交试验设计二)正交试验设计n n(一)正交试验设计的程序(一)正交试验设计的程序n n包括试验方案设计及试验结果分析。n n1试验方案设计试验方案设计n n1)试验指标确定)试验指标确定n n试验指标是由试验目的确定的,因此,在试验前必须明确试验目的,对试验所要解决的问题应有全面深刻了解。经周密考虑,确定试验指标。一项试验至少应有一个指标,也可同时考察几个指标。n n2)确定试验因素和水平)确定试验因素和水平n n根据试验目的确定试验要研究的因素。尽可能全面地考虑影响试验指标的诸因素。实际确定因素时,应先选择对试验指标影响大的因素。n n因素确定后,再确定每个因素的水平。从有利于试验结果分析考虑,水平取3比取2好。因为3水平的因素其试验指标趋势图多数为二次曲线。二次曲线有利于呈现试验因素水平的最佳区域。二水平因素其试验结果趋势图为线性的,只能得出因素水平效应的趋向,很难呈现最佳区域。n n因素水平确定后,列出因素水平表。n3)选用合适的正交表)选用合适的正交表n n根据试验因素水平数以及是否需要估计互作来选择合适的正交表。其原则是既要能安排下全部试验因素,又要使部分实验的水平组合数尽可能的少,以减少试验次数。在能安排下试验因素和要考察的交互作用的前提下,尽可能选用小号正交表。n n另外,为了考察试验误差,所选正交表安排完各因素及交互作用后,最好有1列空列,否则必须进行重复试验以考察试验误差。正交试验最少试验次数确定:正交试验最少试验次数确定:n n例1 对四因素2水平试验,最少试验次数为:n n即四因素2水平正交试验最少应作5次试验,应选表 安排试验。习题习题n n例2 4因素3水平最少试验次数为n n 例3 有8个因素,各3个水平。并且考虑 交互效应,确定最小试验次数T。n n4)表头设计)表头设计n n正交表的每一列可以安排一个因素,所谓表头设计就是将试验因素填到正交表的表头中各列中去的过程。n n表头设计的原则:n n不要让主效应间、主效应与交互作用间有混杂现象。由于正交表中一般都有交互列,因此,当因素少于列数时,尽量不在交互列中安排试验因素,以防发生混杂。n n当存在交互作用时,需查交互作用表。将交互作用安排在合适的列上。n n(1)无交互作用时,表头设计是直接将各因素填到正交表的各列号上代替列号,如表表头设计为:n n n n(2)有交互作用时,如正交试验表安排A,B,C,D 四个因素试验,又要考虑AB和AB两个交互作用。所以设计表头时查交互作用表。按顺序因素A、B先安排在第1、2列,查表得AB应排在第3列,因素C只能排在第4列,所以AC交互应排在第5下列,再依次排因素D,表头设计如下表:n n5)列出试验方案)列出试验方案n n在表头设计基础上,将所选正交表中各列的不同数字换成对应因素的相应水平,就形成了试验方案。n n2试验试验n n试验方案设计完成后,按方案进行试验,获得试试验方案设计完成后,按方案进行试验,获得试验指标值,并将所得指标列在试验方案右侧,得验指标值,并将所得指标列在试验方案右侧,得到了试验方案及结果。到了试验方案及结果。n n注意:用注意:用DPSDPS系统进行方差分析时要有空列,否系统进行方差分析时要有空列,否则无法估算试验误差。则无法估算试验误差。n n若所选表较小,各列均安排了试验因素,可采用若所选表较小,各列均安排了试验因素,可采用对每一个水平组合重复试验,得到指标的重复值,对每一个水平组合重复试验,得到指标的重复值,或取样后从同一次试验中取几个样品进行测试取或取样后从同一次试验中取几个样品进行测试取得指标的几个值。分析时将重复测得的几个指标得指标的几个值。分析时将重复测得的几个指标值全部放在编辑器正交表的右侧。全部定义成数值全部放在编辑器正交表的右侧。全部定义成数据块。据块。3正交设计统计分析方法正交设计统计分析方法n n1)极差分析)极差分析 n n2)方差分析)方差分析(二)DPS正交设计试验结果分析n nDPSDPS数据处理系统中,正交试验结果可进行直观分析数据处理系统中,正交试验结果可进行直观分析(极差分析)和方差分析,并在一起进行。(极差分析)和方差分析,并在一起进行。n n1 1分析方法及步骤分析方法及步骤分析方法及步骤分析方法及步骤n n1 1)先将相应正交表调入数据编辑器。)先将相应正交表调入数据编辑器。n n2 2)将试验所得数据结果按列输入正交表右边。)将试验所得数据结果按列输入正交表右边。n n3 3)将正交表和试验结果(一个或几个)一起定义成)将正交表和试验结果(一个或几个)一起定义成数据矩阵。数据矩阵。n n4 4)点试验统计)点试验统计正交试验方差分析正交试验方差分析弹出输入处理弹出输入处理和空闲因子总数对话框(系统一般能自动识别出来)和空闲因子总数对话框(系统一般能自动识别出来)点点OKOK输入空列列号输入空列列号OKOK选多重比较方法选多重比较方法确确定定可得结果可得结果2DPS正交分析实例n例、自溶酵母提取物是一种多用途食品配料。探讨外加中性蛋白酶方法中,啤酒酵母的最适合自溶条件。n n1)试验指标)试验指标由专业知,指标为自溶液中蛋白质含量Pr%n n2)确定因素和水平)确定因素和水平主要考察:温度()、pH值、加酶量(%)三因素,每个因素各取三个水平。因素水平表如下:n n3)正交表选择)正交表选择n n最少试验次数确定n n所以宜选正交表。n n4)表头及试验方案)表头及试验方案n n打开系统试验设计正交设计正交设计表在弹出对话框中选中表确定调出原表格式。n n在原表格式将原表头中的第1列、第2列、第3列、第4列换为要考察的因素。再将原表中各列中的数字换成对应因素的相应水平,即成实验方案。n n根据试验方案完成试验,在编辑器中将所得结果列在试验方案右侧。n n试验方案及结果如下表5)用)用DPS计算分析计算分析方差分析方差分析 n n分析方法及步骤分析方法及步骤n n1 1)先将相应正交表调入数据编辑器。)先将相应正交表调入数据编辑器。n n2 2)将试验所得数据结果按列输入正交)将试验所得数据结果按列输入正交表右边。表右边。n n3 3)将正交表和试验结果(一个或几个)将正交表和试验结果(一个或几个)一起定义成数据矩阵。一起定义成数据矩阵。n n4 4)点试验统计)点试验统计正交试验方差分析正交试验方差分析弹出输入处理和空闲因子总数对话框弹出输入处理和空闲因子总数对话框(系统一般能自动识别

    注意事项

    本文(DPS数据处理详解ppt课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开