《概率论与数理统计》浙江大学第四版课后习题答案.pdf
概率论与数理统计浙江大学第四版课后习题答案概率论与数理统计习题答案第四版盛骤(浙江大学)浙大第四版(高等教育出版社)第一章 概率论的基本概念1.M写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)(一1)oln?100?S?,?,n 表小班人数 n?nn(3)生产产品直到得到10件正品,记录生产产品的总件数。(M 2)S=10,11,12,?,n,?(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4 个产品就停止检查,记录检查的结果。查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4 次才停止检查。(-(3)S=00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,2/二 设A,B,C 为三事件,用 A,B,C 的运算关系表示下列事件。(1)A 发生,B 与 C 不发生。表示为:A 或 A(AB+AC)或 A(BUC)(2)A,B 都发生,而 C 不发生。表示为:AB或 AB-ABC或 AB-C1(3)A,B,C 中至少有一个发生(4)A,B,C 都发生,表示为:A+B+C表示为:ABC表示为:或 S(A+B+C)或 A?B?C(5)A,B,C 都不发生,(6)A,B,C 中不多于一个发生,即A,B,C 中至少有两个同时不发生相当于中至少有一个发生。故 表 示 为:??。(7)A,B,C 中不多于二个发生。相当于:中至少有一个发生。故表示为:??ABC(8)A,B,C 中至少有二个发生。相当于:AB,BC,AC中至少有一个发生。故 表 示 为:AB+BC+AC6 三 设A,B 是两事件且P(A)=0.6,P(B)=0.7.问在什么条件下P(AB)取到最大值,最大值是多少?(2)在什么条件下P(AB)取到最小值,最小值是多少?解:由P(A)=0.6,P(B)=0.7即知A B W 6,(否则AB=6 依互斥事件加法定理,P(AU B)=P(A)+P(B)=0.6+0.7=1.3>l 与 P(AUB)1 矛盾).从而由加法定理得P(AB)=P(A)+P(B)P(AU B)(*)(1)从 OP(AB)WP(A)知,当AB=A,即A P B 时 P(AB)取到最大值,最大值为 P(AB)=P(A)=0.6,(2)从(*)式知,当AUB=S时,P(AB)取最小值,最小值为P(AB)=0.6+0.7-1=0.3 o7 四设 A,B,C 是三事件,且 P(A)?P?P(C)?P(AC)?1.求 A,B,C 至少有一个发生的概率。81,P(AB)?P(BC)?0,4解:P(A,B,C 至少有一个发生)=P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(B C)-2P(AC)+P(ABC)=315?0?4888 五 在一标准英语字典中具有55个由二个不相同的字母新组成的单词,若从26个英语字母中任取两个字母予以排列,问能排成上述单词的概率是多少?记 A 表“能排成上述单词”2V 从 26个任选两个来排列,排法有A26种。每种排法等可能。字典中的二个不同字母组成的单词:55个P(A)?5511?A261309.在电话号码薄中任取一个电话号码,求后面四个数全不相同的概率。(设后面4 个数中的每一个数都是等可能性地取自0,1,2?9)记 A 表“后四个数全不同”后四个数的排法有104种,每种排法等可能。4 后四个数全不同的排法有A104AP(A)?4?0,5041010.六 在房间里有10人。分别佩代着从1 号到10号的纪念章,任意选3 人记录其纪念章的号码。(1)求最小的号码为5 的概率。记“三人纪念章的最小号码为5”为事件A10?V 10人中任选3 人为一组:选法有?种,且每种选法等可能。?3?5?又事件A 相当于:有一人号码为5,其余2 人号码大于5。这种组合的种数有1?2?5?1?2?1 P(A)?12?10?3?3(2)求最大的号码为5 的概率。10?记“三人中最大的号码为5”为事件B,同上10人中任选3 人,选法有?种,且?3?4?每种选法等可能,又事件B 相当于:有一人号码为5,其余2 人号码小于5,选法有1?2?种4?1?2?1 P(B)?20?10?3?某油漆公司发出17桶油漆,其中白漆10桶、黑漆4 桶,红漆 3 桶。在搬运中所标笺脱落,交货人随意将这些标笺重新贴,问一个定货4 桶白漆,3 桶黑漆和2 桶红漆顾客,按所定的颜色如数得到定货的概率是多少?记所求事件为Ao9 在 17桶中任取9 桶的取法有C17种,且每种取法等可能。432取得4 白3 黑 2 红的取法有CIO?C4?C3故 432C10?C4?C3252P(A)?62431C17124八 在 1500个产品中有400个次品,1100个正品,任意取200个。(1)求恰有90个次品的概率。记“恰有90个次品”为事件A1500?种,每种取法等可能。,/在 1500个产品中任取200个,取法有?200?400?1100?种 200个产品恰有90个次品,取法有?90?110?400?1100?90?110?P(A)?1500?200?4(2)至少有2 个次品的概率。记:A 表”至少有2 个次品”B0表”不含有次品”,B1表“只含有一个次品”,同上,200个产品不含次品,取法1100?种,200个产品含一个次品,取法有?400?1100?种有?200?1?199?BO?B1且 BO,B l互不相容。?1100?400?1100?1?199?200?P(A)?l?P()?l?P(B0)?P(Bl)?l?15001500?200?200?,13/九 从 5 双不同鞋子中任取4 只,4 只鞋子中至少有2 只配成一双的概率是多少?记 A 表“4 只全中至少有两支配成一对”则表“4 只人不配对”10?V 从 10只中任取4 只,取法有?种,每种取法等可能。?4?要 4 只都不配对,可在5 双中任取4 双,再在4 双中的每一双里任取一只。取法有?5?24?4?P()?4C5?244C10?82181372121 P(A)?1?P()?1?15.H 将三个球随机地放入4 个杯子中去,问杯子中球的最大个数分别是1,2,3,的概率各为多少?记 A i表“杯中球的最大个数为i 个 i=l,2,3,三只球放入四只杯中,放法有43种,每种放法等可能对 A1:必须三球放入三杯中,每杯只放一球。放法43332种。(选排列:好比3 个球在4 个位置做排列)5P(A1)?4?3?26?16432 对 A2:必须三球放入两杯,*杯装一球,一杯装两球。放法有C3?4?3种。2(从 3 个球中选2 个球,选法有C 3,再将此两个球放入一个杯中,选法有4种,最后将剩余的1 球放入其余的一个杯中,选法有3 种。2C3?4?3P(A2)?43?9 16对 A3:必须三球都放入一杯中。放法有4 种。(只需从4 个杯中选1个杯子,放入此3 个球,选法有4 种)P(A3)?41?316416.十二 50个钾钉随机地取来用在10个部件,其中有三个抑钉强度太弱,每个部件用3 只钾钉,若将三只强度太弱的钾钉都装在一个部件上,则这个部件强度就太弱,问发生一个部件强度太弱的概率是多少?记 A 表“10个部件中有一个部件强度太弱二法一:用古典概率作:把随机试验E 看作是用三个钉一组,三个钉一组去卸完10个部件(在三个钉的一组中不分先后次序。但 10组钉加完10个部件要分先后次序)3333对 E:钾法有C50种,每种装法等可能?C47?C44?C233333对 A:三个次钉必须加在一个部件上。这种钾法有(C3)X10?C47?C44?C23种3333C3?C47?C44?C23?10333C50?C47?C23P(A)?l?0.00051 1960法二:用古典概率作把试验E 看作是在50个钉中任选30个钉排成一列,顺次钉下去,直到把部件加完。(钾钉要计先后次序)63 对 E:钾法有A50种,每种钾法等可能对 A:三支次钉必须加在“1,2,3”位置上或“4,5,6”位置上,?或“28,29,32732732732730”位置上。这种抑法有A3种?A47?A3?A47?A3?A47?10?A3?A4732710?A3?A4730A50P(A)?l?0.00051 196017.十三 已知 P()?0.3,P(B)?0.4,P(A)?0.5,求 P(B|A?)o解一:P(A)?l?P()?0.7,P()?l?P(B)?0.6,A?AS?A(B?)?AB?A 注意(AB)(A)?.故有P(AB)=P(A)-P(A)=0.7-0.5=0.2o再由加法定理,p(AU)=P(A)+P()-P (A)=0.7+0.6-0.5=0.8 于是P(B|A?)?P B(A?)P(AB)0.2?0.25 P(A?)P(A?)0.8解二:P(A)?P(A)P(|A)?由已知?05?07?P(|A)?P(|A)?0.5521?P(B|A)?故 P(AB)?P(A)P(B|A)?0.77751P(BA?B)P(BA)P(B|A?)定义?0.25P(A?)P(A)?P()?P(A)0.7?0.6?0.518.十四 网?111尸(8网?快但)?,求 供?8)。43211?定义 P(AB)P(A)P(B|A)由已知条件 143?P(B)?1?有?解:由P(A|B)P(B)P(B)2P(B)67由乘法公式,得 P(AB)?P(A)P(B|A)?1121111?46123 由加法公式,得 P(A?B)?P(A)?P(B)?P(AB)?19.十五 掷两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为 1 点的概率(用两种方法)。解:(方法一)(在缩小的样本空间SB中求P(A|B),即将事件B 作为样本空间,求事件A 发生的概率)。掷两颗骰子的试验结果为一有序数组(x,y)(x,y=l,2,3,4,5,6)并且满足 x,+y=7,则样本空间为S=(x,y)|(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)每种结果(x,y)等可能。A=掷二骰子,点数和为7 时,其中有一颗为1 点。故 P(A)?21?63方法二:(用公式 P(A|B)?P(AB)P(B)S=(x,y)|x=1,2,3,4,5,6;y=1,2,3,4,5,6 每矛中结果均可能A=掷两颗骰子,x,y 中有一个为“1点”,B=掷两颗骰子,x,+y=7”。则 P(B)?612,?,P(AB)?226662P(AB)221 故 P(A|B)?P(B)163620 十六 据以往资料表明,某一 3 口之家,患某种传染病的概率有以下规律:P(A)=P 孩子得病=0.6,P(B|A)=P 母亲得病|孩子得病=0.5,P(C|AB)=P 父亲得病|母亲及孩子得病=0.4。求母亲及孩子得病但父亲未得病的概率。解:所求概率为P(AB)(注意:由于“母病”,“孩病”,“父病”都是随机事件,这里不是求P(|AB)8P(AB)=P(A)=P(B|A)=0.6X0.5=0.3,P(C|AB)=1P(C|AB)=l-0.4=0.6.从而 P(AB)=P(AB)-P(|AB)=0.3x0.6=0.18.21.十七 已知10只晶体管中有2 只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概率。(1)二只都是正品(记为事件A)法一:用组合做在10只中任取两只来组合,每一个组合看作一个基本结果,每种取法等可能。C8228P(A)?2?0.62 C1045法二:用排列做在10只中任取两个来排列,每一个排列看作一个基本结果,每个排列等可能。2A82A10P(A)?28 45法三:用事件的运算和概率计算法则来作。记 Al,A2分别表第一、二次取得正品。P(A)?P(A1A2)?P(A)P(A21 A1)?(2)二只都是次品(记为事件B)8728?10945法一:P(B)?2C22C10?l 45法二:P(B)?2A22A10?l 45法三:P(B)?P(12)?P(1)P(211)7211?10945(3)一只是正品,一只是次品(记为事件C)911C87C22C10 法一:P(C)?16 45法二:P(C)?112(C8?C2)?A22A10?16 45法三:P(C)?P(A12?1A2)且 Al21A2 互斥 281682?10910945?P(A1)P(21 A1)?P(1)P(A211)?(4)第二次取出的是次品(记为事件D)法一:因为要注意第一、第二次的顺序。不能用组合作,11A97A22A10 法二:P(D)?1 5法三:P(D)?P(A12?12)且 A12 与 1A2 互斥?P(A1)P(21 A1)?P(1)P(211)782211?109109522.十八 某人忘记了电话号码的最后一个数字,因而随机的拨号,求他拨号不超过三次而接通所需的电话的概率是多少?如果已知最后一个数字是奇数,那么此概率是多少?记 H 表拨号不超过三次而能接通。Ai表第i 次拨号能接通。注意:第一次拨号不通,第二拨号就不再拨这个号码。?H?A1?1A2?12A3三种情况互斥P(H)?P(A1)?P(1)P(A211)?P(1)P(211)P(A3112)?1919813?10109109810如果已知最后一个数字是奇数(记为事件B)问题变为在B 已发生的条件下,求 H10再发生的概率。P(H|B)?PA11 B?1A2|B?12A31B)?P(A11 B)?P(1|B)P(A21 B1)?P(11 B)P(2|B1)P(A31B12)71414313?554543524/十九 设有甲、乙二袋,甲袋中装有n 只白球m 只红球,乙袋中装有N 只白球M 只红球,今从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,问取到(即从乙袋中取到)白球的概率是多少?(此为第三版19题)记 Al,A2分别表“从甲袋中取得白球,红球放入乙袋”再记B 表“再从乙袋中取得白球”。*/.B=A1B+A2B 且 Al,A2 互斥 P(B)=P(A1)P(B|Al)+P(A2)P(B|A2)=nN?lmN?n?mN?M?ln?mN?M?l 十九(2)第一只盒子装有5 只红球,4 只白球;第二只盒子装有4 只红球,5 只白球。先从第一盒子中任取2 只球放入第二盒中去,然后从第二盒子中任取一只球,求取到白球的概率。记 C1为“从第一盒子中取得2 只红球二C2为“从第一盒子中取得2 只白球二C3为“从第一盒子中取得1 只红球,1 只白球”,D 为“从第二盒子中取得白球”,显然Cl,C2,C3两两互斥,C1UC2U C3=S,由全概率公式,有P(D)=P(C1)P(D|Cl)+P(C2)P(D|C2)+P(C3)P(D|C3)112C525C4?C47C5653?2?2?1199C911C911C9226.二十一 已知男人中有5%是色盲患者,女人中有0.25%是色盲患者。今从男女11人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?解:Al=男人,A2=女人,B=色盲,显然 A1UA2=S,Al A2=6 由已知条件知P(A1)?P(A2)?由贝叶斯公式,有 1P(B|A1)?5%,P(B|A2)?0.25%2?15?P(A1B)P(A1)P(B|Al)20P(Al|B)?125P(B)P(A1)P(B|A1)?P(A2)P(B|A2)152l?2100210000 二十二 一学生接连参加同一课程的两次考试。第一次及格的概率为 P,若第一次P 及格则第二次及格的概率也为P;若第一次不及格则第二次及格的概率为(1)若至少2有一次及格则他能取得某种资格,求他取得该资格的概率。(2)若已知他第二次已经及格,求他第一次及格的概率。解:Ai=他第i 次及格,i=l,2已知 P(A1)=P(A21A1)=P,P(A2|1)?(1)B=至少有一次及格所以?两次均不及格?12 Z.P(B)?1?P()?1?P(12)?1?P(1)P(2|1)?1?1?P(A1)1?P(A2|1)?1?(1?P)(1?P31)?P?P2 222(*)定义 P(A1A2)(2)P(A1A2)P(A2)由乘法公式,有 P(A1A2)=P(A1)P(A2|A1)=P 2 由全概率公式,有P(A2)?P(A1)P(A21 A1)?P(1)P(A211)12?P?P?(1?P)?P2P2P?22将以上两个结果代入(*)得 P(A1|A2)?P2P2P?22?2P P?128.二十五 某人下午5:00下班,他所积累的资料表明:某日他抛一枚硬币决定乘地铁还是乘汽车,结果他是5:47到家的,试求他是乘地铁回家的概率。解:设人=乘地铁”,B=“乘汽车,C=5:455:49到家”,由题意,AB=4),AUB=S 已知:P(A)=0.5,P(C|A)=0.45,P(C|B)=0.2,P(B)=0.5由贝叶斯公式有 P(A|C)?P(C|A)P(A)?P(C)0,5?0.450.459?0.6923110.6513P(C|A)?P(C|B)2229.二十四 有两箱同种类型的零件。第一箱装5 只,其中10只一等品;第二箱30只,其中18只一等品。今从两箱中任挑出一箱,然后从该箱中取零件两次,每次任取一只,作不放回抽样。试 求(1)第一次取到的零件是一等品的概率。(2)第一次取到的零件是一等品的条件下,第二次取到的也是一等品的概率。解:设 Bi表示“第 i 次取到一等品 i=l,213Aj表 示“第j 箱产品 j=l,2,显然A1UA2=S(1)P(B1)?A1A2=1101182?0.4(Bl=A1B+A2B 由全概率公式解)。250230511O911817?P(B1B2)(2)P(B21 Bl)?0.4857 2P(B1)5(先用条件概率定义,再求P(B1B2)时,由全概率公式解)32.二十六(2)如图 1,2,3,4,5表示继电器接点,假设每一继电器接点闭合的概率为p,且设各继电器闭合与否相互独立,求 L 和 R 是通路的概率。记 A i表第i 个接点接通记 A 表从L 到 R 是构成通路的。A=A1A2+A1A3A5+A4A5+A4A3A2 四种情况不互斥/.P(A)=P(A1A2)+P(A1A3A5)+P(A4A5)+P(A4A3A2)P(A1A2A3A5)+P(A1A2 A4A5)+P(A1A2 A3 A4)+P(A1A3 A4A5)+P(A1A2 A3A4A5)P(A2 A3 A4A5)+P(A1A2A3 A4A5)+P(A1A2 A3 A4A5)+(A1A2 A3 A4A5)+P(A1A2 A3 A4A5)-P(A1A2 A3 A4A5)又由于Al,A2,A3,A4,A5互相独立。故 P(A)=p2+p3+p2+p3 p4+p4+p4+p4+p5+p4+p5+p5+p5+p5 p5=2 p2+3P3-5p4+2 p5 二十六(1)设有4 个独立工作的元件1,2,3,4 o 它们的可靠性分别为Pl,P2,P3,P 4,将它们按图(1)的方式联接,求系统的可靠性。记 A i表示第i 个元件正常工作,i=l,2,3,4,14A 表示系统正常。A=A1A2A3+A1A4两种情况不互斥(加法公式),P(A)=P(A1A2A3)+P(A1A4)一 P(A1A2A3 A4)=P(Al)P(A2)P(A3)+P(Al)P(A4)-P(Al)P(A2)P(A3)P(A4)=P1P2P3+P1P4-P1P2P3P4(Al,A2,A3,A4 独立)34.三 十 一 袋中装有m 只正品硬币,n 只次品硬币,(次品硬币的两面均印有国徽)。在袋中任取一只,将它投掷r 次,已知每次都得到国徽。问这只硬币是正品的概率为多少?解:设“出现r 次国徽面”=Br”任取一只是正品”=A由全概率公式,有mlrn()?lrm?n2m?nmlr()P(A)P(Br|A)m?P(A|Br)?mlrnP(Br)m?n?2r()?m?n2m?nP(Br)?P(A)P(Br|A)?P()P(Br|)?(条件概率定义与乘法公式)35.甲、乙、丙三人同时对飞机进行射击,三人击中的概率分别为0.4,0.5,0.7o飞机被一人击中而被击落的概率为0.2,被两人击中而被击落的概率为0.6,若三人都击中,飞机必定被击落。求飞机被击落的概率。解:高 Hi表示飞机被i 人击中,i=l,2,3o Bl,B2,B2分别表示甲、乙、丙击中飞机H1?B123?123?12B3,三种情况互斥。H2?B1B23?B12B3?1B2B3 三种情况互斥H37B2B2B3 15又 Bl,B2,B2独立。J P(H1)?P(B1)P(2)P(3)?P(1)P(B2)P(3)?P(l)P(2)P(B3)?0.4?0.5?0.3?0.6?0.5?0.3?0.6?0.5?0.7?0.36P(H2)?P(B1)P(B2)P(3)?P(B1)P(2)P(B3)?P(l)P(B2)P(B3)?0.4?0.5?0.3+0.4x0.5x0.7+0.6x0.5x0.7=0.41P(H3)=P(B1)P(B2)P(B3)=0.4x0.5x0.7=0.14又因:A=H1A+H2A+H3A三种情况互斥故由全概率公式,有P(A)=P(H1)P(A|H1)+P(H2)P(A|H2)+P(H3)P(AH3)=0.36x0.2+0.41x0.6+0.14x1=0.45836.三十三 设由以往记录的数据分析。某船只运输某种物品损坏2%(这一事件记为A1),10%(事件A2),90%(事件A3)的概率分别为P(Al)=0.8,P(A2)=0.15,P(A2)=0.05,现从中随机地独立地取三件,发现这三件都是好的(这一事件记为B),试分别求P(A1|B)P(A2|B),P(A3|B)(这里设物品件数很多,取出第一件以后不影响取第二件的概率,所以取第一、第二、第三件是互相独立地)丁 B 表取得三件好物品。B=A1B+A2B+A3B三种情况互斥由全概率公式,有J P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=0.8x(0.98)3+0.15x(0.9)3+0.05x(0.1)3=0.862416P(A1B)P(A1)P(B|A1)O.8?(O.98)3P(A11 B)?0.8731P(B)P(B)0.8624P(A2B)P(A2)P(B|A2)0.15?(0.9)3P(A2|B)?0.1268 P(B)P(B)0.8624P(A3B)P(A3)P(B|A3)0.05?(0.1)3P(A31 B)?0.0001P(B)P(B)0.862437.三十四 将 A,B,C 三个字母之一输入信道,输出为原字母的概率为a,而输出为其它一字母的概率都是(1-a)/2o 今将字母串AAAA,BBBB,CCCC之一输入信道,输入AAAA,BBBB,CCCC的概率分别为pl,p2,p3(pl+p2+p3=l),已知输出为A BCA,问输入的是AAAA的概率是多少?(设信道传输每个字母的工作是相互独立的。)解:设D表示输出信号为ABCA,B1、B2、B3分别表示输入信号为AAAA,BBBB,CCCC,则 B l、B2、B3 为一完备事件组,且 P(Bi)=Pi,i=l,2,3。再设A发、A收分别表示发出、接收字母A,其余类推,依题意有P(A 收|A 发)=P(B 收|B 发)=P(C 收|C 发)=a,P(A 收|B 发)=P(A 收|C 发)=P(B 收|A 发)=P(B 收|C 发)=P(C 收|A发)=P(C收|B发)=l?a 2又 P(ABCA|AAAA)=P(D|B 1)=P(A 收|A 发)P(B 收|A 发)P(C 收|A发)P(A收|A发)=a 2(1?a 2),2l?a 3)2 同样可得 P(D|B2)=P(D|B3)=a?(于是由全概率公式,得P(D)?P(B)P(D|B)iii?13?pla2(l?a21?a3)?(P2?P3)a()22由Bayes公式,得P(AAAA|ABCA)=P(B 1|D)=P(B1)P(D|Bl)P(D)17=2aPl 2aPl?(l?a)(P2?P3)二十九 设第一只盒子装有3只蓝球,2只绿球,2只白球;第二只盒子装有2只蓝球,3只绿球,4只白球。独立地分别从两只盒子各取一只球。(1)求至少有一只蓝球的概率,(2)求有一只蓝球一只白球的概率,(3)已知至少有一只蓝球,求有一只蓝球一只白球的概率。解:记A l、A2、A 3分别表示是从第一只盒子中取到一只蓝球、绿球、白球,B l、B2、B3分别表示是从第二只盒子中取到一只蓝球、绿球、白球。(1)记C=至少有一只蓝球C=A1B1+A1B2+A1B3+A2B1+A3B1,5 种情况互斥由概率有限可加性,得P(C)?P(A1B1)?P(A1B2)?P(A1B3)?P(A2B1)?P(A3B1)独立性 P(A)P(B)?P(A)P(B)?P(A)P(B)?P(A)P(B)?P(A)P(B)1112132131?32333422225?79797979799(2)记D=有一只蓝球,一只白球,而且知D=A1B3+A3B1两种情况互斥P(D)?P(A1B3?P(A3B1)?P(A1)P(B3)?P(A3)P(B1)?342216?797963P(CD)P(D)16?P(C)P(C)35(3)P(D|C)?(注意到 CD?D)三十A,B,C三人在同一办公室工作,房间有三部电话,据统计知,打给A,B,2 2 1 c的电话的概率分别为,。他们三人常因工作外出,A,B,C三人外出的概,555111率分别为,,设三人的行动相互独立,求244(1)无人接电话的概率;(2)被呼叫人在办公室的概率;若某一时间断打进了 3个电话,求(3)这3个电话打给同一人的概率;(4)这3个电话打给不同人的概率;(5)这3个电话都打给B,而B却都不在的概率。18解:记Cl、C2、C 3分别表示打给A,B,C的电话D I、D 2、D 3分别表示A,B,C外出注意到 C l、C2、C3 独立,且 P(C1)?P(C2)?P(D1)?21,P(C3)?5511,P(D2)?P(D3)?24(1)P(无人接电话)=P(D1D2D3)=P(D1)P(D2)P(D3)=1111?24432(2)记 G=被呼叫人在办公室”,G?C1D1?C2D2?C3D3三种情况互斥,由有限可加性与乘法公式P(G)?P(C1D1)?P(C2D2)?P(C3D3)?由于某人外出与??P(C1)P(D1|C1)?P(C2)P(D2|C2)?P(C3)P(D31C3)?否和来电话无关?故P(D|C)?P(D)?21231313kkk?52545420(3)H 为“这 3 个电话打给同一个人”P(H)?22222211117?555555555125(4)R 为“这 3 个电话打给不同的人”R 由六种互斥情况组成,每种情况为打给A,B,C 的三个电话,每种情况的概率为2214?555125于是 P(R)?6?424 7125125(5)由于是知道每次打电话都给B,其概率是1,所以每一次打给B电话而B 不在1 的概率为,且各次情况相互独立411于 是 P(3 个电话都打给B,B 都不在的概率)=()3?46419第二章 随机变量及其分布1.M 一袋中有5 只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X可以取值3,4,5,分布律为217C23C5P(X?3)?P(一球为3号,两球为1,2号)??110217C33C5P(X?4)?P(一球为4号,再在1,2,3中任取两球)??3107610P(X?5)?P(一球为5号,再在1,2,3,4中任取两球)?也可列为下表X:3,4,5 P:217C43C5136H10101034三 设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X表示取出次品的只数,(1)求X的分布律,(2)画出分布律的图形。解:任取三只,其中新含次品个数X可能为0,1,2个。P(X?0)?3C133C15?22 35P(X?1)?12C27C133C1521C27C133C1512?35?1 35P(X?2)?再列为下表X:0,1,220P:22121,3535354 四 进行重复独立实验,设每次成功的概率为p,失败的概率为q=1p(0<p<l)(1)将实验进行到出现一次成功为止,以X表示所需的试验次数,求X的分布律。(此时称X服从以p为参数的几何分布。)(2)将实验进行到出现r次成功为止,以Y表示所需的试验次数,求Y的分布律。(此时称丫服从以r,p为参数的巴斯卡分布。)(3)一篮球运动员的投篮命中率为4 5%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。解:(1)P(X=k)=qklp k=l,2,?(2)Y=r+n=最后一次实验前r+n-l次有n 次失败,且最后一次成功P(Y?r?n)?Crn?n?lqnpr?lp?Crn?n?lqnpr,(3)P(X=k)=(0.55)k-10.45 供取偶数)=11?0,1,2,?,其中 q=l-p,r?lrk?r 或记 r+n=k,则PY=k=Ck,k?r,r?l,?lp(l?p)k=l,2?k?l?P(X?2k)?k?l?(0.55)2k?10.45?ll316 六 一大楼装有5 个同类型的供水设备,调查表明在任一时刻t 每个设备使用的概率为0.1,问在同一时刻(1)恰有2 个设备被使用的概率是多少?225?22P(X?2)?C5pq?C5?(0.1)2?(0.9)3?0.0729(2)至少有3 个设备被使用的概率是多少?345P(X?3)?C5?(0.1)3?(0.9)2?C5?(0.1)4?(0.9)?C5?(0.1)570.00856(3)至多有3 个设备被使用的概率是多少?012P(X?3)?C5(0.9)5?C5?0.1?(0.9)4?C5?(0.1)2?(0.9)33?C5?(0.1)3?(0.9)2?0.99954(4)至少有一个设备被使用的概率是多少?P(X?l)?l?P(X?0)?l?0.59049?0.40951 五 一房间有3 扇同样大小的窗子,其中只有一扇是打开的。有一只鸟自开着的窗子飞入了房间,它只能从开着的窗子飞出去。鸟在房子里飞来飞去,试图飞出房间。假定鸟是没有记忆的,鸟飞向各扇窗子是随机的。21(1)以X表示鸟为了飞出房间试飞的次数,求X的分布律。(2)户主声称,他养的一只鸟,是有记忆的,它飞向任一窗子的尝试不多于一次。以Y表示这只聪明的鸟为了飞出房间试飞的次数,如户主所说是确实的,试求Y的分布律。(3)求试飞次数X小于Y的概率;求试飞次数Y小于X的概率。解:(1)X的可能取值为1,2,3,?,n,?P X=n=P 前n 1次飞向了另2扇窗子,第n次飞了出去=(23)n?l?l3,n=l,2,?(2)Y的可能取值为1,2,3P Y=1=P 第1次飞了出去=13PY=2=P 第1次飞向另2扇窗子中的一扇,第2次飞了出去=23?112?3PY=3=P 第1,2次飞向了另2扇窗子,第3次飞了出去=2!3!?133(3)PX?Y?PY?kPX?Y|Y?kk?l?全概率公式并注意到??3PY?kPX?Y|Y?k?PX?Y|Y?l?0?k?23?PY?kPX?k注意至U X,Y独立即k?2 PX?Y|Y?k?111?3?3?3?1?3?23?1?3?PX?k3同上,PX?Y?PY?kPX?Y|Y?kk?l?3PY?kPX?k?llk?13?1214193?3?9?3?27?81 故 PY?X?1?PX?Y?PX?Y)?38818/八 甲、乙二人投篮,投中的概率各为0.6,0.7,令各投三次。求(1)二人投中次数相等的概率。22记 X 表甲三次投篮中投中的次数Y 表乙三次投篮中投中的次数由于甲、乙每次投篮独立,且彼此投篮也独立。p(X=Y)=P(X=0,Y=0)+P(X=2,Y=2)+P(X=3,Y=3)=P(X=0)P(Y=0)+P(X=l)P(Y=l)+P(X=2)P(Y=2)+P(X=3)P(Y=3)11=(0.4)3x(0.3)3+C3?0.6?(0.4)2?C3?0,7?(0.3)222?C3?(0.6)2?0.4?C3?(0.7)2?,3?(0.6)3?(0.7)3?0,321(2)甲比乙投中次数多的概率。P(X>;Y)=P(X=l,Y=0)+P(X=2,Y=0)+P(X=2,Y=l)+P(X=3)P(Y=0)+P(X=3)P(Y=l)+P(X=3)P(Y=2)=P(X=l)P(Y=0)+P(X=2,Y=0)+P(X=2,Y=l)+P(X=3)P(Y=0)+P(X=3)P(Y=l)+P(X=3)P(Y=2)12=C3?0.6?(0.4)2?(0.3)3?C3?(0.6)2?0.4?(0.3)8?21 C3?(0.6)2?0.4?C3?0.7?(0.3)2?(0.6)3l?(0.3)3?(0.6)3?C3?0.7?(0.3)2?(0.6)32?C3?(0.7)2?0.3?0.2439 十 有甲、乙两种味道和颜色极为相似的名酒各4 杯。如果从中挑4 杯,能将甲种酒全部挑出来,算是试验成功一次。(1)某人随机地去猜,问他试验成功一次的概率是多少?(2)某人声称他通过品尝能区分两种酒。他连续试验10次,成功3次。试问他是猜对的,还是他确有区分的能力(设各次试验是相互独立的。)解:(1)P(一次成功)=11?470c83(2)P(连续试验10次,成功3 次)=(210(136973。此概率太小,按实)()?707010000际推断原理,就认为他确有区分能力。九 有一大批产品,其验收方案如下,先做第一次检验:从中任取10件,经验收无次品接受这批产品,次品数大于2 拒收;否则作第二次检验,其做法是从中再任取5 件,仅当5 件中无次品时接受这批产品,若产品的次品率为10%,求23(1)这批产品经第一次检验就能接受的概率(2)需作第二次检验的概率(3)这批产品按第2 次检验的标准被接受的概率(4)这批产品在第1 次检验未能做决定且第二次检验时被通过的概率(5)这批产品被接受的概率解:X 表示10件中次品的个数,Y 表示5 件中次品的个数,由于产品总数很大,故XB(10,0.1),Y-B(5,0.1)(近似服从)(1)P X=0=0.9100.34921(2)P X2=P X=2+P X=l=C100.120.98?C100.10.99?0.581(3)P Y=0=0.9 50,590(4)P0<XW2,Y=0(0<XW2与 Y=2独立)=P0<XW2PY=0=0.581x0.590?0.343(5)PX=0+P0<X 9)(查入=4 泊松分布表)。=0.051134-0.021363=0.029771(2)每分钟的呼唤次数大于10的概率。P(X>10)=P(X 11)=0.002840(查表计算)十 二 每分钟呼唤次数大于3 的概率。PX?3?PX?4?0.566530 十六 以X 表示某商店从早晨开始营业起直到第一顾客到达的等待时间(以分计),X 的分布函数是?l?e?0.4x,x?0FX(x)?x?0?0求下述概率:(1)P 至 多3分钟;(2)P 至少4分钟;(3)P 3分钟至4分钟之间;24(4)P 至 多3分钟或至少4分钟;(5)P 恰 好2.5分钟解:(1)P 至多 3 分钟=P XW3 =FX(3)?l?e?1.2(2)P 至少 4 分钟 P(X 24)=1?FX?e?1.6(3)P 3 分钟至 4 分钟之间=P 3<X4=FX(4)?FX(3)?e?1.2?e?1.6(4)P 至 多3分钟或至少4分钟=P 至 多3分钟+P 至少4分钟=l?e?1.2?e?1.6(5)P 恰好 2.5 分钟=P(X=2.5)=0?O,x?l,18.十七 设随机变量X的分布函数为F?X(x)?lnx,l?x?e,?l,x?e.