双曲线的简单几何性质-PPT.ppt
双曲线的简单几何性质1.双曲线的标准方程双曲线的标准方程:形式一:形式一:(焦点在(焦点在x轴上,(轴上,(-c,0)、)、(c,0)形式二:形式二:(焦点在(焦点在y轴上,(轴上,(0,-c)、()、(0,c)其中其中一、复习回顾:一、复习回顾:oYX关于关于X,Y轴轴,原点对称原点对称(a,0),(0,b)(c,0)A1A2;B1B2|x|a,|y|bF1F2A1A2B2B12.椭圆的图像与性质椭圆的图像与性质:2、对称性、对称性 一、研究双曲线一、研究双曲线 的简单几何性质的简单几何性质1、范围、范围关于关于x轴、轴、y轴和原点都是对称的轴和原点都是对称的.x轴、轴、y轴是双曲线的对称轴,原点是对称中心,轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。又叫做双曲线的中心。xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)二、讲授新课:二、讲授新课:3、顶点、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点)双曲线与对称轴的交点,叫做双曲线的顶点xyo-bb-aa如图,线段如图,线段 叫做双曲线叫做双曲线的实轴,它的长为的实轴,它的长为2a,a叫做叫做实半轴长;线段实半轴长;线段 叫做双叫做双曲线的虚轴,它的长为曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长叫做双曲线的虚半轴长(2)实轴与虚轴等长的双曲线实轴与虚轴等长的双曲线叫等轴双曲线叫等轴双曲线(3)4、离心率、离心率离心率离心率。ca0e 1e e是表示双曲线开口大小的一个量是表示双曲线开口大小的一个量,e,e越大开口越大越大开口越大!(1)定义:)定义:(2)e e的范围的范围:(3)e e的含义:的含义:大家应该也有点累了,稍作休息大大 家家 有有 疑疑 问问 的的,可可 以以 询询 问问 和和 交交 流流大大 家家 有有 疑疑 问问 的的,可可 以以 询询 问问 和和 交交 流流5、渐近线焦点在焦点在x轴上的双曲线的几何性质轴上的双曲线的几何性质双曲线标准方程:双曲线标准方程:YX1、范围:范围:xa或或x-a2、对称性:、对称性:关于关于x轴,轴,y轴,原点对称。轴,原点对称。3、顶点、顶点:A1(-a,0),),A2(a,0)4、轴:实轴、轴:实轴 A1A2 虚轴虚轴 B1B2A1A2B1B25、渐近线方程:、渐近线方程:6、离心率:、离心率:e=关于关于x轴、轴、y轴、原点对称轴、原点对称图形方程范围对称性顶点离心率A1(-a,0),),A2(a,0)A1(0,-a),),A2(0,a)关于关于x轴、轴、y轴、原点对称轴、原点对称渐进线.yB2A1A2 B1 xOF2F1xB1yO.F2F1B2A1A2.F1(-c,0)F2(c,0)F2(0,c)F1(0,-c)如何记忆双曲线的渐进线方程?如何记忆双曲线的渐进线方程?例例1 1、求下列双曲线的渐近线方程、求下列双曲线的渐近线方程 (1)4x(1)4x2 29y9y2 2=36,=36,(2)25x (2)25x2 24y4y2 2=100.=100.2x3y=05x2y=0