《激光原理及应用》陈家璧第二版-第七章课件.ppt
-
资源ID:92853347
资源大小:1.27MB
全文页数:29页
- 资源格式: PPT
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
《激光原理及应用》陈家璧第二版-第七章课件.ppt
7.1 激光热加工原理1.无论是哪一种激光加工的方法,都要将肯定功率激光束聚焦于被加工物体上,使激光与物质相互作用。在不同激光参数下的各种加工的应用范围如图7-1示图7-1 各种参数条件下激光加工的可能应用和影响7.1 激光热加工原理1.对激光与材料的相互作用过程的物理描述可以分为以下四个方面:(1)材料对激光的吸取 激光热加工时首先发生的是材料对激光能量的吸取。透入材料内部的光能主要对材料起加热作用。不同材料对不同波长激光吸取率不同。假设材料外表反射率为R,则吸取率为 当激光由空气垂直入射到平板材料上时,依据菲涅尔公式,反射率为(2)材料的加热 设入射激光束的光功率密度为qi,材料外表吸取的光功率密度为q0,则有 激光从外表入射到材料内部深度为处的光强 一般将激光在材料内的穿透深度定义为光强降至I0/e 时的深度,因而穿透深度为1/a 7.1 激光热加工原理(2)材料的加热 为了得到加热阶段的温度分布,必需求解热传导微分方程。对于各向同性的均匀材料,激光加热的热传导偏微分方程的一般形式为 假设光功率的损耗全部变成热量,则有 从理论上讲,依据加工时的各工艺参数以及初始条件,可以解出加工过程中激光照射区的温度场分布。但实际加工时,各方面的因素使热传导方程的求解特别困难 简化:假设半无限大即物体厚度无限大物体外表受到均匀的激光垂直照射加热,被材料外表吸取的光功率密度不随时间转变,而且光照时间足够长,以至被吸取的能量、所产生的温度、导热和热辐射之间到达动平衡,此时圆形激光光斑中心的温度可以由下式确定 7.1 激光热加工原理(2)材料的加热 假设光照时间为有限长(s),考察点离开外表的距离(cm)也不为零,此时圆形激光光斑中心轴线上考察点的温度为 进一步假设照射激光是高斯光束,且入射到外表上的光束有效半径为,则激光光斑的功率密度可用离开中心的距离表示为 持续加热得到的光斑中心的温度最大值为(2)材料的熔化与汽化 激光功率密度过高,材料在外表汽化,不在深层熔化;激光功率密度过低,则能量会集中到较大的体积内,使焦点处熔化的深度很小7.1 激光热加工原理(4)激光等离子体屏蔽现象 如图7-2所示,为等离子云变化的过程激光作用于靶外表,引发蒸汽,蒸汽连续吸取激光能量,使温度上升,最终在靶外表产生高温高密度的等离子体。等离子体快速向外膨胀,在此过程中连续吸取入射激光,阻挡激光到达靶面,切断了激光与靶的能量耦合。图7-2 等离子云变化的过程1.激光淬火技术,又称激光相变硬化,它利用聚焦后的激光束照射到钢铁材料外表,使其温度快速升到相变点以上。当激光移开后,由于仍处于低温的内层材料的快速导热作用,使表层快速冷却到马氏体相变点以下,获得淬硬层。7.2.1 激光淬火技术的原理与应用2.图7-3 为一台柔性激光加工系统的示意图。它通过五维运动的工作头把激光照射到被加工的外表,在计算机掌握下直接扫描被加工外表完成激光淬火图7-3 柔性激光加工系统示意图3.激光淬火可以使工件表层0.1到1.0mm范围内的组织构造和性能发生明显变化。图7-4所示为45钢外表激光淬火区横截面金相组织图图7-4 钢表面激光淬火区横截面金相组织图4.图7-5所示为该淬火区显微硬度沿深度方向的分布曲线7.2.1 激光淬火技术的原理与应用图7-5该淬火区显微硬度沿深度方向的分布曲线图5.依据激光器的特点不同,激光淬火可分为CO2激光淬火和因素YAG激光淬火。但两者中影响淬硬性能的主要根本一样1)材料成分:是通过材料的淬硬性和淬透性来影响激光淬硬层深度与硬度的。一般说来,随着钢中含碳量的增加,淬火后马氏体的含量也增加,激光淬硬层的显微硬度也就越高,如图7-6所示。图7-6 基材含碳量与激光淬火层显微硬度的关系7.2.1 激光淬火技术的原理与应用5.依据激光器的特点不同,激光淬火可分为CO2激光淬火和因素YAG激光淬火。但两者中影响淬硬性能的主要根本一样2)激光工艺参数:激光淬火层的宽度主要打算于光斑直径;淬硬层深度由激光功率、光斑直径和扫描速度共同打算;描述激光淬火的另一个重要工艺参数为功率密度,即单位面积注入工件外表的激光功率。为了使材料外表不熔化,激光淬火的功率密度通常低于104Wcm2,一般为1000-6000Wcm2。3)外表预处理状态:一是外表组织淮备,即通过调质处理等手段使钢铁材料外表具有较细的外表组织,以便保证激光淬火时组织与性能的均匀、稳定。如图7-7为原始组织及扫描速度对激光淬硬层深度的影响;二是外表“黑化”处理,以便提高钢铁外表对激光束的吸取率。图7-7 原始组织及扫描速度对激光淬硬层深度的影响7.2.2 激光外表熔凝技术1.用激光束将外表熔化而不加任何合金元素,以到达外表组织改善的目的。与激光淬火工艺相比,激光熔凝处理的关键是使材料外表经受了一个快速熔化一凝固过程,所获得的熔凝层为铸态组织。工件横截面沿深度方向的组织依次为:熔凝层、相变硬化层、热影响区和基材,如图7-9所示。图7-9 激光熔凝处理后横截面组织示意图2.图7-10给出了激光熔凝处理后,T10钢外表显微硬度沿深度方向的分布。图7-10 T10钢激光熔凝层显微硬度沿淬硬层深度的分布7.2.3 激光熔覆技术1.激光熔覆(Laser Cladding)技术亦称激光包覆、激光涂覆、激光熔敷,是一种新的外表改性技术。它通过在基材外表添加熔覆材料,利用高功率密度的激光束使之与基材外表一起熔凝的方法,在基材外表形成与其为冶金结合的添料熔覆层,以改善其外表性能的工艺。2.激光熔覆技术具有如下优点图7-11 同步送料法激光熔覆示意图3.激光熔覆工艺依据材料的添加方式不同,分为预置涂层法和同步送料法。4.同步送料法指在激光束照射基材的同时,将待熔覆的材料送入激光熔池,经熔融、冷凝后形成熔覆层的工艺过程。激光熔覆材料包括金属、陶瓷或者金属陶瓷,材料的形式可以是粉末、丝材或者板材,工艺过程如图7-11所示。7.2.3 激光熔覆技术5.评价激光熔覆层质量的主要指标为:熔覆层厚度、宽度、外形系数(宽度厚度)、稀释率、硬度及其沿深度分布、基板的热影响区深度及变形程度等。典型熔覆层的截面示意图见图7-12 图7-12 熔覆层的截面示意图6.激光熔覆层的宽度主要打算于光斑直径;而激光熔覆层的厚度与送粉量、扫描速度、功率密度等参数亲密相关。7.常用激光熔覆材料包括镍基、铁基、钻基、铜基自熔合金、以及上述合金与碳化物(WC、TiC、SiC等),颗粒组成的金属陶瓷复合粉末以及Al203、ZrO2等陶瓷材料。常用的基材包括钢铁、铝合金、铜合金、镍合金和钛合金等。1.激光打孔原理:激光打孔机的根本构造包括激光器、加工头、冷却系统、数控装置和操作面盘图7-13。加工头将激光束聚焦在材料上需加工孔的位置,适中选择各加工参数,激光器发出光脉冲就可以加工出需要的孔。7.3.1 激光打孔图7-13 激光打孔机的根本构造示意图2.激光打孔时材料的去除主要与激光作用区内物质的破坏及破坏产物的运动有关。严格分析激光打孔的成因需要解决激光打孔时产生的蒸气和粘性液体沿孔壁流淌的动力学问题,这里只依据一些试验关系,建立一个唯象的描述对激光打孔的激光束几何参数和总能量与孔的深度和孔径之间的关系进展估算 7.3.1 激光打孔图7-14 激光打孔几何原理简图 2.激光打孔的激光束几何参数和总能量与孔的深度和孔径之间的关系进展估算。如图7-14的激光打孔原理简图 假设在t时刻孔的底面半径为r(t),孔深为h(t),则有 考虑材料从孔底蒸发,而熔化的液体从孔壁流走,t时刻的能量守衡方程为 当 时,可以近似解出用激光加工的总能量表示的孔深度和孔径为 7.3.1 激光打孔图7-14离焦量对打孔质量的影响3.激光打孔工艺参数的影响 脉冲宽度对打孔的影响:脉冲宽度对打孔深度、孔径、孔形的影响较大。窄脉冲能够得到较深而且较大的孔;宽脉冲不仅使孔深度、孔径变小,而且使孔的外表粗糙度变大,尺寸精度下降。激光打孔中离焦量对打孔的影响当激光聚焦于材料上外表时,打出的孔比较深,锥度较小。在焦点处于外表下某一位置时一样条件下打出的孔最深;而过分的入焦和离焦都会使得激光功率密度大大降低,以至打成盲孔图7-15。7.3.1 激光打孔3.激光打孔工艺参数的影响 被加工材料对打孔的影响 脉冲激光的重复频率对打孔的影响用调Q方法取得巨脉冲时,脉冲的平均功率根本不变,脉宽也不变,重复频率越高,脉冲的峰值功率越小,单脉冲的能量也越小。这样打出的孔深度要减小。材料对激光的吸取率直接影响到打孔的效率。由于不同材料对不同激光波长有不同的吸取率,必需依据所加工的材料性质选择激光器。4.应用实例:用激光加工系统打薄板筛孔 图7-15 薄板打孔效果图7.3.2 激光切割1.激光切割的原理与特点 切割过程中激光光束聚焦成很小的光点最小直径可小于0.1mm使焦点处到达很高功率密度可超过106W/cm2。如图7-17所示为激光切割头的构造,除了透镜以外它还有一个喷出帮助气体流的同轴喷嘴。2.激光切割的特点图7-15 激光切割头的结构示意图3.激光切割分类及其机理 汽化切割:工件在激光作用下快速加热至沸点,局部材料化作蒸汽逸去,局部材料为喷出物从切割缝底部吹走。这种切割机制所需激光功率密度一般为108/cm2左右,是无熔化材料的切割方式 熔化切割:激光将工件加热至熔化状态,与光束同轴的氩、氦、氮等帮助气流将熔化材料从切缝中吹掉。熔化切割所需的激光功率密度一般为107/cm2左右 氧助熔化切割:金属被激光快速加热至燃点以上,与氧发生猛烈的氧化反响即燃烧,放出大量的热,又加热下一层金属,金属被连续氧化,并借助气体压力将氧化物从切缝中吹掉。7.3.2 激光切割4.激光切割的工艺参数及其规律 激光切割的工艺参数及其规律 激光功率:激光切割时所需功率的大小,是由材料性质和切割机理打算的。切割速度:在肯定功率条件下,板厚越大,切割速度越小。切割速度对切口外表粗糙度也有较大影响。喷嘴:喷嘴是影响激光切割质量和效率的个重要部件。激光切割一般承受同轴(气流与光轴同心)喷嘴,喷嘴出口直径大小应依据板厚加以选择。另外,喷嘴到工件外表的距离对切割质量也有较大影响,为了保证切割过程稳定,这个距离必需保持不变。气体的压力:在功率和切割材料板厚肯定时,有一最正确切割气体流量,这时切割速度最快。随着激光功率的增加,切割气体的最正确流量是增大的。光束在质量、透镜焦距和离焦量:激光器输出光束的模式为基横模时对激光切割最为有利。光斑大小与聚焦透镜的焦距成正比。短焦距的透镜虽然可以得到较小光斑,但焦深很小。离焦量对切割速度和切割深度影响较大,切割过程中必需保持不变,一般离焦量选用负值,即焦点位置置于切割板面下面某一点。7.3.2 激光切割5.工业材料的激光切割 工业材料的激光切割 金属材料的激光切割:二氧化碳激光器成功的用于很多金属的切割实践;利用氧助熔化切割方法切割碳钢板的切缝可掌握在满足的宽度范围内;大多数合金构造钢和合金工具钢都能够用激光切割方法得到良好的切边质量;铝及铝合金不能用氧助熔化切割而要熔化切割机制;飞机制造业常用的钛及钛合金承受空气作为帮助气体比较稳妥,可以确保切割质量;大多数镍基合金也可实施氧助熔化切割;铜及铜合金反射率太高,根本上不能用10.6的二氧化碳激光进展切割。非金属材料的激光切割:塑料、橡胶、木材、纸制品、皮革、自然织物及其它有机材料都可以用激光进展切割,但是木材的厚度需有所限制。无机材料中石英和陶瓷可以用激光进展切割,后者宜用掌握断裂切割且不行使用高功率。玻璃和石头一般不宜用激光切割。1.激光焊接是一种材料连接,主要是金属材料之间连接的技术。它和传统的焊接技术一样,通过将材料连接区的局部熔化而将两个零件或部件连接起来。图7-19 阴极芯的激光焊接设备原理图 1:光束分束器;2:聚焦透镜;3:阴极芯2.激光焊接相对于传统方式的优点:1用激光很简洁对一些一般焊接技术难以加工的如脆性大、硬度高或松软性强的材料实施焊接。2在激光焊接过程中无机械接触,易保证焊接部位不因热压缩而发生变形 3激光束易于掌握的特点使得焊接工作能够更便利的实现自动化和智能化。3.图7-19所示为一种显象管阴极芯的激光焊接设备原理 4.激光焊接主要有热导焊和深熔焊两种。热导焊承受的激光功率为105w/cm2 左右,是靠热传导进展焊接的,焊缝深度小于2.5mm,焊缝的深宽比最大为3:1。深熔焊承受的功率密度在106107w/cm2 之间,焊缝的深宽比最大可达12:1 7.4.1 激光热导焊1.激光热导焊热导焊时,激光辐射能量作用于材料外表,激光辐射能在外表转化为热量。外表热量通过热传导向内部集中,使材料熔化,在两材料连接区的局部形成溶池。溶池随着激光束一道向前运动,溶池中的熔融金属并不会向前运动。在激光束向前运动后,溶池中的熔融金属随之凝固,形成连接两块材料的焊缝。2.激光热导焊的工艺及局部参数 激光热导焊的连接形式:片状工件的焊接形式有对焊、端焊、中心穿透熔化焊等 激光功率密度:如激光功率密度低则熔深浅、焊接速度慢。图720是热导焊接不锈钢时熔化深度、扫描速度与激光功率密度的关系 图7-20 激光热导焊焊接不锈钢时功率与焊接速度、熔化深度的关系7.4.1 激光热导焊2.激光热导焊的工艺及局部参数脉冲激光热导焊的脉冲宽度:脉冲宽度影响到焊接熔深,热影响区的宽度等焊接的质量要求。脉宽时间长,焊接熔深热影响区都大,反之则小。因此,要依据激光功率的大小,要求的焊接熔深和热影响区的宽度大小来适中选择脉冲宽度。离焦量对焊接质量的影响:由于焦点处激光光斑中心的光功率密度过高,激光热导焊通常需要肯定的离焦量,使得光功率分布相对均匀。离焦方式有两种,焦平面位于工件上方为正离焦,反之为负离焦。在实际应用中,要求熔深较大时承受负离焦,焊接薄材料时宜用正离焦。此外离焦量还直接影响到焊逢的宽度。脉冲激光热导焊的脉冲波形:激光热导焊也可以用脉冲激光来完成,其脉冲波形对于焊接质量也有很大的影响。焊接铜、铝、金、银等高反射率的材料,为了突破高反射率的屏障,使金属瞬间熔化把反射率降低下来,实现后续的热导焊过程,需要脉冲带有一个前置的尖峰。而对于铁、镍、钼钛等黑色金属,外表反射率较低,应承受较为平坦或平顶的波形。7.4.2 激光深熔焊1.激光深熔焊的原理当激光功率密度到达106107Wcm2时,功率输入远大于热传导、对流及辐射散热的速率,材料外表发生汽化而形成匙孔,孔内金属蒸汽压力与四周液体的静力和外表张力形成动态平衡,激光可以通过孔中直射到孔底。2.激光深熔焊工艺参数 临界功率密度:深熔焊时,功率密度必需大于某一数值,才能引起小孔效应。这一数值,称为临界功率密度。不同材料具有不同的临界功率密度的大小。因此打算了各种材料进展激光深熔焊的难易程度。激光深熔焊的熔深:激光深熔焊熔深与激光输出功率密度亲密相关,也是功率和光斑直径的函数。在肯定的激光功率下,提高焊接速度,热输入下降,焊接熔深削减。对于给定的激光功率等条件,存在一维持深熔焊接的最小焊接速度。3.激光焊接过程中的几种效应(1)深熔焊焊接过程中的等离子体2 壁聚焦效应 3净化效应4.激光焊的优点 1.快速成型技术的根本工作原理是离散、积存。图7-22 立体光造型技术的原理示意图7.5.1 激光快速成型技术的原理及主要优点2.由于快速成型技术(包括激光快速成型技术)仅在需要增加材料的地方加上材料,所以从设计到制造自动化,从学问猎取到计算机处理,从打算到接口、通讯等方面来看,特别适合于CIM、CAD及CAM,同传统的制造方法相比较,显示出诸多优点。快速性、适合成型简单零件、高度柔性、高度集成化7.5.2 激光快速成型技术1立体光造型技术 立体光造型技术的原理如图7-22所示,是典型的逐层制造法。图7-23 选择性激光烧结技术根本原理示意图7.5.2 激光快速成型技术2选择性激光烧结技术选择性激光烧结技术与立体光造型技术很相像,也是用激光束来扫描各原材料,但用粉末物质代替了液态光聚合物。选择性激光烧结技术的根本原理见图7-23所示。图7-24 激光熔覆成型技术原理示意图7.5.2 激光快速成型技术3激光熔覆成型技术 激光熔覆成型技术原理图如图7-24所示,目前用此法制造出简单截面变换器的零件外形的误差在0.5mm以内图7-25。图7-25 激光熔覆的简单截面变换器4激光近型制造技术 激光近形制造技术(Laser Engineering Net Shaping,简称LENS)技术,将快速成型技术中的选择性激光烧结技术和激光熔覆成型技术结合了起来。激光近形制造技术的根本原理如图7-26所示。该系统主要由4局部组成:计算机、高功率激光器、多坐标数控工作台和送粉装置。图7-26 激光近形制造技术的根本原理示意图7.5.2 激光快速成型技术4激光近型制造技术 1 计算机 用于建立待制作零件的CAD模型,将零件的CAD模型转换成STL文件,对零件的CAD模型进展切片处理,生成一系列具有肯定厚度的薄层,并形成每一层薄层的扫描轨迹,以便掌握多坐标数控工作台运动。2高功率激光器 使用的是高达几千瓦到十几千瓦功率的CO2激光器,而不像选择性激光烧结技术中所用的CO2激光器只有50瓦。3多坐标数控工作台 承受多坐标数控工作台的运动实现扫描:在工作台上的零件除能够沿着X,Y轴方向运动外,还可以绕X,Y轴转动。4送粉装置 送粉装置是激光近形成型制造系统中特别重要并具有特点的一个局部。送粉装置性能的好坏打算了零件的制作质量。对送粉装置的根本要求是能够供给均匀稳定的粉末流。送粉装置有两种形式:侧向送粉装置和同轴送粉装置。7.5.2 激光快速成型技术5薄片叠层制造技术 薄片叠层制造技术是一种常用来制作模具的新型快速成型技术。其工作原理就是,首先用大功率激光束切割金属薄片。然后将多层薄片叠加,并使其外形渐渐发生变化,最终获得所需原型(模具)的立体几何外形图7-27。图7-27 薄片叠层制造技术原理示意图7.5.3 激光快速成型技术的重要应用 1用于制造简单外形的零件 特殊适合于在航天航空工业中制作大型带加强筋的整体薄壁构造零件。2快速制造原型 可以在极短的时间内设计制造出零件的原型,进展外观、功能和运动上的考核,觉察错误准时订正,避开由于设计错误而带来的工装、模具等铺张。3用于制造多种材料或非均质材料的零件 4用于制造活性金属的零件 由于激光快速成型制造能够供给良好的工作气氛环境,材料铺张少,所以可以用于加工活性金属(如钛、钨、镍等)及其他的特殊金属。5用于小批量生产塑料制件 6用于制造各种模具或模型 选择性激光烧结技术在航空工业中最有进展前途的应用,就是快速制造周密铸造中的陶瓷模壳和型芯。1.激光滑洗技术是指承受高能激光束照射工件外表,使外表的污物、颗粒、锈斑或者涂层等附着物发生瞬间蒸发或者剥离、从而到达洁净化的工艺过程。7.6.1 激光清洗技术2.与一般的化学清洗法和机械清洗法相比激光清洗具有如下特征:1它是一种完全的“干式”清洗过程,不需要使用清洁液或者其它化学溶液,是一种“绿色”消洗工艺,并且清洁度远远高于化学清洗工艺;2清洗的对利象范围很广。3激光清洗适用于几平全部固体基材。4激光清洗可以便利地实现自动化操作,还可利用光纤将激光引入污染区,操作人员只需远距离遥控操作、特别安全便利,这对于一些特殊的应用场合,如核反响堆冷凝管的除锈等,具有重要的意义。7.6.2 激光弯曲1.激光弯曲是一种柔性成形新技术,它利用激光加热产生不均匀的温度场诱发热应力代替外力实现金属板料的成形。