欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    最新微积分II第5章不定积分.pdf

    • 资源ID:93090982       资源大小:289.58KB        全文页数:7页
    • 资源格式: PDF        下载积分:5.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    最新微积分II第5章不定积分.pdf

    微积分 I I 第 5 章不定积分 精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢4 章节名称:5.1 原函数与不定积分的概念 教学目的与要求:理解并掌握不定积分及原函数的概念,能由定义求一些简单的不定积分,理解不定积分的几何意义.教学重点:不定积分的概念及几何意义 教学难点:不定积分的概念,积分曲线 教学方法:讲练结合 作业安排:P158 1(1)(3)(4)5.1 原函数与不定积分的概念 5.1.1 原函数的概念 定义 1:设 Skip Record If.是定义在区间 D 上的已知函数,若存在一个函数F(x),对任何 Skip Record If.有 Skip Record If.或 Skip Record If.则称函数 F(x)为已知函数 Skip Record If.在区间 D 上的一个原函数。定理 1(原函数存在定理)如果函数 Skip Record If.在区间 D 内连续,那么在区间 D 内必存在可导函数 Skip Record If.,使得对每一 Skip Record If.都有 Skip Record If.,即连续函数必定存在原函数。定理 2 如果函数 Skip Record If.在区间 D 内有原函数 Skip Record If.,那么对于任意常数 C,有 Skip Record If.即函数 Skip Record If.也是 Skip Record If.在 D 内的原函数。这说明函数 Skip Record If.在 D 内存在原函数的话,则必有无穷多个原函数。定理 3 区间 D 内函数的所有原函数中,任意两个原函数之间只差一个常数。5.1.2 不定积分的定义 教学难点不定积分的概念积分曲线教学方法讲练结合作业安排原函数与不定积分的概念原函数的概念定义设是定义在果函数在区间内连续那么在区间内必存在可导函数使得对每一都有即连续函数必定存在原函数定理如果函数在区间内理区间内函数的所有原函数中任意两个原函数之间差一个常数不定积分的定义仅供学习与交流如有侵权请联系网站删精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢4 定义 2 在区间 D 上,函数 Skip Record If.带有任意常数项的原函数成为 Skip Record If.在区间 D 上的不定积分,记为 Skip Record If.其中,Skip Record If.是积分变量,Skip Record If.是被积函数,Skip Record If.称为被积表达式,Skip Record If.称为积分号。若 Skip Record If.是 Skip Record If.的一个原函数,则由定义有 Skip Record If.,C 为积分常数。例 2 求下列不定积分:(1)Skip Record If.(2)Skip Record If.5.1.3 不定积分的几何意义 通常把Skip Record If.的一个原函数Skip Record If.的图像,叫做函数Skip Record If.的积分曲线,它的方程是Skip Record If.。这样,不定积分Skip Record If.,在几何上就表示一族曲线Skip Record If.,叫做Skip Record If.的积分曲线族。章节名称:5.2 不定积分的性质及基本积分公式 教学目的与要求:熟练掌握不定积分的性质及基本积分公式,能使用直接积分法计算不定积分。教学重点:不定积分的性质,基本积分公式,直接积分法 教学难点:不定积分的性质,直接积分法 教学方法:讲练结合 作业安排:P159 3(3)(4)(5)5.2 不定积分的性质及其基本积分公式 5.2.1 不定积分的性质 由不定积分的定义和导数运算法则,可以得到以下不定积分的性质。性质 1 求不定积分与求导或求微分互为逆运算。教学难点不定积分的概念积分曲线教学方法讲练结合作业安排原函数与不定积分的概念原函数的概念定义设是定义在果函数在区间内连续那么在区间内必存在可导函数使得对每一都有即连续函数必定存在原函数定理如果函数在区间内理区间内函数的所有原函数中任意两个原函数之间差一个常数不定积分的定义仅供学习与交流如有侵权请联系网站删精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢4(1)Skip Record If.或 Skip Record If.(1)(2)Skip Record If.或 Skip Record If.(2)也就是,不定积分的导数(或微分)等于被积函数(或被积表达式);一个函数的导数(或微分)的不定积分与这个函数相差一个任意常数。性质 2 设函数Skip Record If.和Skip Record If.的原函数存在,则 dxxgdxxfdxxgxf)()()()(性质 3 在求不定积分时,非零常数因子可以提到积分号外面,即 Skip Record If.Skip Record If.5.2.2 基本积分公式(见课本)例 1 求Skip Record If.5.2.3 直接积分法 直接积分法是指直接(或把被积函数通过简单的恒等变形后)利用不定积分的运算性质和积分基本公式求出不定积分的方法。例 2 求下列不定积分:(1)Skip Record If.;(2)Skip Record If.;(3)Skip Record If.;(4)Skip Record If.章节名称:5.3 换元积分法 教学目的与要求:熟练掌握第一换元积分法,理解第二换元积分法,能用换元积分法积分 教学重点:第一换元积分法 教学难点:凑微分,第二换元法 教学方法:讲练结合 教学难点不定积分的概念积分曲线教学方法讲练结合作业安排原函数与不定积分的概念原函数的概念定义设是定义在果函数在区间内连续那么在区间内必存在可导函数使得对每一都有即连续函数必定存在原函数定理如果函数在区间内理区间内函数的所有原函数中任意两个原函数之间差一个常数不定积分的定义仅供学习与交流如有侵权请联系网站删精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢4 作业安排:P159 4(1)(3)(4)(13)P160 1(4)5.3 换元积分法 5.3.1 第一换元积分(凑微分)法 对于复合函数Skip Record If.,令Skip Record If.,若Skip Record If.,有 Skip Record If.那么 Skip Record If.此式告诉我们,如果某积分的被积表达式为Skip Record If.的结构形式,则可先计算Skip Record If.,并令Skip Record If.,则有 Skip Record If.再利用基本积分公式求得积分结果。此方法称为第一换元积分法,又称凑微分法 例如,求Skip Record If.,这里可把Skip Record If.看作通过中间变量Skip Record If.复合而成的复合函数Skip Record If.,而被积表达式的剩余部分Skip Record If.可凑成Skip Record If.的微分,即Skip Record If.,于是有)(2222xdedxxexx 由积分基本公式Skip Record If.,可得:Skip Record If.例 1 求Skip Record If.例 2 求Skip Record If.例 3 求Skip Record If.例 4 求Skip Record If.例 5 求Skip Record If.例 6 求Skip Record If.可以看出,用凑微分法求解不定积分时,关键问题是要熟练掌握一些常见的凑微分形式,做到根据中间变量的具体形式而灵活运用。常见的几种基本凑微分形式如下(其中Skip Record If.):(1)Skip Record If.(2)Skip Record If.Skip Record If.特别是:Skip Record If.,Skip Record If.(3)Skip Record If.(4)Skip Record If.(5)Skip Record If.(6)Skip Record If.(7)Skip Record If.教学难点不定积分的概念积分曲线教学方法讲练结合作业安排原函数与不定积分的概念原函数的概念定义设是定义在果函数在区间内连续那么在区间内必存在可导函数使得对每一都有即连续函数必定存在原函数定理如果函数在区间内理区间内函数的所有原函数中任意两个原函数之间差一个常数不定积分的定义仅供学习与交流如有侵权请联系网站删精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢4(8)Skip Record If.章节名称:5.4 分部积分法 教学目的与要求:掌握分部积分法,用分部积分法计算不定积分 教学重点:分部积分法 教学难点:分部积分法及公式推导 教学方法:讲练结合 作业安排:P159 5(1)(2)(3)(4)5.4 分部积分法 若某个积分的被积函数可以表示为两个因子的乘积,且其中一个恰是某函数的导数,即为Skip Record If.的形式,而Skip Record If.又难以用直接积分法或凑微分法求解,往往要使用分部积分法进行求解。设函数Skip Record If.具有连续导数,根据乘法微分公式有 Skip Record If.即 Skip Record If.对该式两边同时积分得 Skip Record If.此公式称为分部积分公式。分部积分的关键是首先明确适应于分部积分的被积函数类型、u 的选择及凑成 dv。常见的分部积分类型共有五种:(1)Skip Record If.Skip Record If.Skip Record If.Skip Record If.或Skip Record If.Skip Record If.Skip Record If.Skip Record If.(2)Skip Record If.Skip Record If.Skip Record If.Skip Record If.(3)Skip Record If.Skip Record If.Skip Record If.Skip Record If.(4)Skip Record If.Skip Record If.Skip Record If.Skip Record If.(5)Skip Record If.Skip Record If.Skip Record If.Skip Record If.也可令 Skip Record If.Skip Record If.教学难点不定积分的概念积分曲线教学方法讲练结合作业安排原函数与不定积分的概念原函数的概念定义设是定义在果函数在区间内连续那么在区间内必存在可导函数使得对每一都有即连续函数必定存在原函数定理如果函数在区间内理区间内函数的所有原函数中任意两个原函数之间差一个常数不定积分的定义仅供学习与交流如有侵权请联系网站删精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢4 或Skip Record If.Skip Record If.Skip Record If.Skip Record If.也可令 Skip Record If.Skip Record If.例 1 求Skip Record If.例 2 求Skip Record If.例 3 求Skip Record If.例 4 求Skip Record If.例 5 求Skip Record If.。例 6 求Skip Record If.教学难点不定积分的概念积分曲线教学方法讲练结合作业安排原函数与不定积分的概念原函数的概念定义设是定义在果函数在区间内连续那么在区间内必存在可导函数使得对每一都有即连续函数必定存在原函数定理如果函数在区间内理区间内函数的所有原函数中任意两个原函数之间差一个常数不定积分的定义仅供学习与交流如有侵权请联系网站删

    注意事项

    本文(最新微积分II第5章不定积分.pdf)为本站会员(c****4)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开