2023年2020届中考数学总复习图形的平移-精练精析及答案解析.pdf
-
资源ID:93093963
资源大小:1,016.12KB
全文页数:22页
- 资源格式: PDF
下载积分:5.3金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023年2020届中考数学总复习图形的平移-精练精析及答案解析.pdf
北京市 Earlybird 图形的变化图形的平移 1 一选择题(共 8 小题)1如图,将ABC 沿 BC方向平移 2cm得到DEF,若ABC 的周长为 16cm,则四边形 ABFD的周长为()A 16cm B 18cm C 20cm D 22cm 2如图,如果把ABC 的顶点 A先向下平移 3 格,再向左平移 1 格到达 A点,连接 AB,则线段 AB 与线段 AC的关系是()A 垂直 B 相等 C 平分 D平分且垂直 3已知线段 CD是由线段 AB平移得到的,点 A(1,4)的对应点为 C(4,7),则点 B(4,1)的对应点 D的坐标为()A(1,2)B(2,9)C(5,3)D(9,4)4 如图,将边长为 4 个单位的等边ABC 沿边 BC向右平移 2 个单位得到DEF,则四边形 ABFD的周长为()A 12 B 16 C 20 D 24 5 如图,已知EFD=BCA,BC=EF,AF=DC 若将ABC 沿 AD向右平移,使点 C 与点 D重合,则所得到的图形形状是()北京市 Earlybird A 梯形 B 平行四边形 C矩形 D等边三角形 6如图将等腰直角ABC 沿 BC方向平移得到A1B1C1,若 BC=3,ABC 与A1B1C1重叠部分面积为 2,则 BB1=()A 1 B C D 2 7如图,EF是ABC 的中位线,AD是中线,将AEF 沿 AD方向平移到A1E1F1的位置,使E1、F1落在 BC边上,此时点 A1恰好落在 EF上,已知AEF 的面积是 7,则阴影部分的面积是()A 7 B 14 C 21 D 28 8 如图,在 RtABC 中,C=90,AC=4,将ABC 沿 CB向右平移得到DEF,若四边形 ABED的面积等于 8,则平移距离等于()A 2 B 4 C 8 D 16 二填空题(共 8 小题)9如图,将边长为 12 的正方形 ABCD 沿其对角线 AC剪开,再把ABC 沿着 AD方向平移,得到ABC,当两个三角形重叠部分的面积为 32 时,它移动的距离 AA等于 _ 得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird 10 如图,在ABC 中,AB=4,BC=6,B=60,将ABC 沿射线 BC的方向平移 2 个单位后,得到ABC,连接 AC,则ABC 的周长为 _ 11如图,在直角坐标系中,已知点 A(3,1),点 B(2,1),平移线段 AB,使点 A落在 A1(0,1),点 B 落在点 B1,则点 B1的坐标为 _ 12如图,在平面直角坐标系中,点 A坐标为(1,3),将线段 OA向左平移 2 个单位长度,得到线段 OA,则点 A的对应点 A的坐标为 _ 13 在平面直角坐标系中,将点 A(1,2)向右平移 3 个单位长度得到点 B,则点 B 关于 x轴的对称点 C 的坐标是 _ 14 如图,矩形 ABCD 中,AB=3cm,BC=4cm 沿对角线 AC剪开,将ABC 向右平移至A1BC1位置,成图(2)的形状,若重叠部分的面积为 3cm2,则平移的距离 AA1=_ cm 得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird 15如图,将周长为 8 的ABC 沿 BC方向向右平移 1 个单位得到DEF,则四边形 ABFD 的周长为 _ 16如图,已知 A(3,1),B(1,1),C(2,0),曲线 ACB 是以 C 为对称中心的中心对称图形,把此曲线沿 x 轴正方向平移,当点 C 运动到 C(2,0)时,曲线 ACB 描过的面积为 _ 三解答题(共 7 小题)17在边长为 1 的小正方形网格中,AOB 的顶点均在格点上,(1)B 点关于 y 轴的对称点坐标为 _;(2)将AOB 向左平移 3 个单位长度得到A1O1B1,请画出A1O1B1;(3)在(2)的条件下,A1的坐标为 _ 18如图,ABC 中,AB=BC,将ABC 沿直线 BC平移到DCE(使 B 与 C 重合),连接 BD,求BDE 的度数 得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird 19如图,在方格纸中(小正方形的边长为 1),ABC 的三个顶点均为格点,将ABC 沿 x轴向左平移 5 个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的ABC,并直接写出点 A、B、C的坐标;(2)求出在整个平移过程中,ABC 扫过的面积 20如图,已知ABC 的面积为 16,BC=8 现将ABC 沿直线 BC向右平移 a 个单位到DEF的位置(1)当 a=4 时,求ABC 所扫过的面积;(2)连接 AE、AD,设 AB=5,当ADE 是以 DE为一腰的等腰三角形时,求 a 的值 21如图,将矩形 ABCD 沿对角线 AC剪开,再把ACD 沿 CA方向平移得到ACD(1)证明AADCCB;(2)若ACB=30,试问当点 C 在线段 AC上的什么位置时,四边形 ABCD是菱形,并请说明理由 22 如图,在三角形 ABC 中,AC=BC,若将ABC 沿 BC方向向右平移 BC长的距离,得到CEF,连接 AE(1)试猜想,AE与 CF有何位置上的关系?并对你的猜想给予证明;(2)若 BC=10,tanACB=时,求 AB的长 得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird 23 如图,已知ABC 的面积为 3,且 AB=AC,现将ABC 沿 CA方向平移 CA长度得到EFA(1)求四边形 CEFB的面积;(2)试判断 AF与 BE的位置关系,并说明理由;(3)若BEC=15,求 AC的长 得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird 图形的变化图形的平移 1 参考答案与试题解析 一选择题(共 8 小题)1如图,将ABC 沿 BC方向平移 2cm得到DEF,若ABC 的周长为 16cm,则四边形 ABFD的周长为()A 16cm B 18cm C 20cm D 22cm 考点:平移的性质 专题:几何图形问题 分析:根据平移的基本性质,得出四边形 ABFD 的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案 解答:解:根据题意,将周长为 16cm的ABC 沿 BC向右平移 2cm得到DEF,AD=CF=2cm,BF=BC+CF=BC+2cm,DF=AC;又AB+BC+AC=16cm,四边形 ABFD 的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20cm 故选:C 点评:本题考查平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等得到 CF=AD,DF=AC 是解题的关键 2如图,如果把ABC 的顶点 A先向下平移 3 格,再向左平移 1 格到达 A点,连接 AB,则线段 AB 与线段 AC的关系是()A 垂直 B相等 C平分 D 平 分且垂直 考点:平移的性质;勾股定理 专题:网格型 分析:先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段 AB 与线段 AC的关系 得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird 解答:解:如图,将点 A先向下平移 3 格,再向左平移 1 格到达 A点,连接 AB,与线段 AC交于点 O AO=OB=,AO=OC=2,线段 AB 与线段 AC互相平分,又AOA=45+45=90,ABAC,线段 AB 与线段 AC互相垂直平分 故选:D 点评:本题考查了平移的性质,勾股定理,正确利用网格求边长长度及角度是解题的关键 3已知线段 CD是由线段 AB平移得到的,点 A(1,4)的对应点为 C(4,7),则点 B(4,1)的对应点 D的坐标为()A(1,2)B(2,9)C(5,3)D(9,4)考点:坐标与图形变化-平移 专题:常规题型 分析:根据点 A、C 的坐标确定出平移规律,再求出点 D的坐标即可 解答:解:点 A(1,4)的对应点为 C(4,7),平移规律为向右 5 个单位,向上 3 个单位,点 B(4,1),点 D的坐标为(1,2)故选:A 点评:本题考查了坐标与图形变化平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减 4 如图,将边长为 4 个单位的等边ABC 沿边 BC向右平移 2 个单位得到DEF,则四边形 ABFD的周长为()A 12 B 16 C 20 D 24 考点:平移的性质;等边三角形的性质 得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird 专题:数形结合 分析:根据平移的性质易得 AD=BE=2,那么四边形 ABFD 的周长即可求得 解答:解:将边长为 4 个单位的等边ABC 沿边 BC向右平移 2 个单位得到DEF,AD=BE=2,各等边三角形的边长均为 4 四边形 ABFD 的周长=AD+AB+BE+FE+DF=16 故选 B 点评:本题考查平移的性质,用到的知识点为:平移前后对应线段相等;关键是找到所求四边形的各边长 5如图,已知EFD=BCA,BC=EF,AF=DC 若将ABC 沿 AD向右平移,使点 C 与点 D重合,则所得到的图形形状是()A 梯形 B平行四边形 C 矩形 D 等 边三角形 考点:平移的性质;平行四边形的判定 分析:首先根据平移后点 C 与点 D重合,AF=DC,得到点 A和点 F 重合,然后根据EFD=BCA,得到 BCEF,从而判定所得到的图形形状是平行四边形 解答:解:平移后点 C 与点 D重合,AF=DC,点 A和点 F 重合,EFD=BCA,BCEF,BC=EF,所得到的图形形状是平行四边形,故选 B 点评:本题考查了平移的性质及平行四边形的判定,解题的关键是了解平行四边形的判定定理,难度不大 6如图将等腰直角ABC 沿 BC方向平移得到A1B1C1,若 BC=3,ABC 与A1B1C1重叠部分面积为 2,则 BB1=()A 1 B C D 2 考点:平移的性质;等腰直角三角形 分析:重叠部分为等腰直角三角形,设 B1C=2x,则 B1C 边上的高为 x,根据重叠部分的面积列方程求 x,再求 BB1 得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird 解答:解:设 B1C=2x,根据等腰三角形的性质可知,重叠部分为等腰直角三角形,则 B1C 边上的高为 x,x2x=2,解得 x=(舍去负值),B1C=2,BB1=BC B1C=故选:B 点评:本题考查了等腰直角三角形的性质,平移的性质 关键是判断重叠部分图形为等腰直角三角形,利用等腰直角三角形的性质求斜边长 7如图,EF是ABC 的中位线,AD是中线,将AEF 沿 AD方向平移到A1E1F1的位置,使E1、F1落在 BC边上,此时点 A1恰好落在 EF上,已知AEF 的面积是 7,则阴影部分的面积是()A 7 B14 C 21 D 28 考点:平移的性质 分析:根据三角形的中位线平行于第三边并且等于第三边的一半可知 SABC=4SAEF,再根据平移变换只改变图形的位置不改变图形的形状可知 SA1E1F1=SAEF,然后列式计算即可得解 解答:解:EF 是ABC 的中位线,SABC=4SAEF=47=28,AEF 沿 AD方向平移到A1E1F1,SA1E1F1=SAEF=7,阴影部分的面积=28 7 7=14 故选 B 点评:本题考查了平移的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质是解题的关键,难点在于理解三角形的中位线把三角形分成的小三角形的面积等于原三角形的面积的 8 如图,在 RtABC 中,C=90,AC=4,将ABC 沿 CB向右平移得到DEF,若四边形 ABED的面积等于 8,则平移距离等于()得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird A 2 B 4 C 8 D 16 考点:平移的性质 分析:根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED 是平行四边形,再根据平行四边形的面积公式即可求解 解答:解:将ABC 沿 CB向右平移得到DEF,四边形 ABED 的面积等于 8,AC=4,平移距离=84=2 故选 A 点评:本题主要考查平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等 二填空题(共 8 小题)9如图,将边长为 12 的正方形 ABCD 沿其对角线 AC剪开,再把ABC 沿着 AD方向平移,得到ABC,当两个三角形重叠部分的面积为 32 时,它移动的距离 AA等于 4 或8 考点:平移的性质;解一元二次方程-因式分解法;平行四边形的判定与性质;正方形的性质 专题:几何动点问题 分析:根据平移的性质,结合阴影部分是平行四边形,AAH 与HCB都是等腰直角三角形,则若设 AA=x,则阴影部分的底长为 x,高 AD=2 x,根据平行四边形的面积公式即可列出方程求解 解答:解:设 AC交 AB于 H,A=45,D=90 AHA 是等腰直角三角形 设 AA=x,则阴影部分的底长为 x,高 AD=12 x x(12 x)=32 x=4 或 8,即 AA=4 或 8cm 故答案为:4 或 8 得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird 点评:考查了平移的性质及一元二次方程的解法等知识,解决本题关键是抓住平移后图形的特点,利用方程方法解题 10 如图,在ABC 中,AB=4,BC=6,B=60,将ABC 沿射线 BC的方向平移 2 个单位后,得到ABC,连接 AC,则ABC 的周长为 12 考点:平移的性质 分析:根据平移性质,判定ABC 为等边三角形,然后求解 解答:解:由题意,得 BB=2,BC=BCBB=4 由平移性质,可知 AB=AB=4,ABC=ABC=60,AB=BC,且ABC=60,ABC 为等边三角形,ABC 的周长=3AB=12 故答案为:12 点评:本题考查的是平移的性质,熟知图形平移后新图形与原图形的形状和大小完全相同是解答此题的关键 11如图,在直角坐标系中,已知点 A(3,1),点 B(2,1),平移线段 AB,使点 A落在 A1(0,1),点 B 落在点 B1,则点 B1的坐标为(1,1)考点:坐标与图形变化-平移 分析:根据网格结构找出点 A1、B1的位置,然后根据平面直角坐标系写出点 B1的坐标即可 解答:解:通过平移线段 AB,点 A(3,1)落在(0,1),得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird 即线段 AB沿 x 轴向右移动了 3 格 如图,点 B1的坐标为(1,1)故答案为:(1,1)点评:本题考查了坐标与图形变化平移,熟练掌握网格结构准确找出点的位置是解题的关键 12 如图,在平面直角坐标系中,点 A坐标为(1,3),将线段 OA向左平移 2 个单位长度,得到线段 OA,则点 A的对应点 A的坐标为(1,3)考点:坐标与图形变化-平移 专题:几何图形问题 分析:根据点向左平移 a 个单位,坐标 P(x,y)P(x a,y)进行计算即可 解答:解:点 A坐标为(1,3),线段 OA向左平移 2 个单位长度,点 A的对应点 A的坐标为(1 2,3),即(1,3),故答案为:(1,3)点评:此题主要考查了坐标与图形的变化平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减 13 在平面直角坐标系中,将点 A(1,2)向右平移 3 个单位长度得到点 B,则点 B 关于 x轴的对称点 C 的坐标是(2,2)考点:坐标与图形变化-平移;关于 x 轴、y 轴对称的点的坐标 专题:几何图形问题 分析:首先根据横坐标右移加,左移减可得 B 点坐标,然后再关于 x 轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案 解答:解:点 A(1,2)向右平移 3 个单位长度得到的 B 的坐标为(1+3,2),即(2,2),得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird 则点 B 关于 x 轴的对称点 C 的坐标是(2,2),故答案为:(2,2)点评:此题主要考查了坐标与图形变化平移,以及关于 x 轴对称点的坐标,关键是掌握点的坐标变化规律 14 如图,矩形 ABCD 中,AB=3cm,BC=4cm 沿对角线 AC剪开,将ABC 向右平移至A1BC1位置,成图(2)的形状,若重叠部分的面积为 3cm2,则平移的距离 AA1=2 cm 考点:平移的性质 专题:压轴题 分析:首先假设 AA1=x,DA1=4 x,再利用平移的性质以及相似三角形的性质得出,求出 x 的值即可 解答:解:矩形 ABCD 中,AB=3cm,BC=4cm 沿对角线 AC剪开,将ABC 向右平移至A1BC1位置,成图(2)的形状,重叠部分的面积为 3cm2,设 AA1=x,DA1=4 x,NA1DA1=3,NA1=,NA1CD,解得:x=2 则平移的距离 AA1=2,故答案为:2 点评:此题主要考查了平移的性质以及相似三角形的性质,根据题意得出是解决问题的关键 得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird 15 如图,将周长为 8 的ABC 沿 BC方向向右平移 1 个单位得到DEF,则四边形 ABFD 的周长为 10 考点:平移的性质 分析:根据平移的基本性质解答即可 解答:解:根据题意,将周长为 8 的ABC 沿边 BC向右平移 1 个单位得到DEF,则 AD=1,BF=BC+CF=BC+1,DF=AC,又AB+BC+AC=10,四边形 ABFD 的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10 故答案为:10 点评:本题考查平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等得到 CF=AD,DF=AC 是解题的关键 16如图,已知 A(3,1),B(1,1),C(2,0),曲线 ACB 是以 C 为对称中心的中心对称图形,把此曲线沿 x 轴正方向平移,当点 C 运动到 C(2,0)时,曲线 ACB 描过的面积为 8 考点:平移的性质;坐标与图形性质 专题:计算题 分析:连接 AB和 AB,根据平移的性质可知,平行四边形 ABBA的面积即是曲线 ACB 描过的面积,然后利用平行四边形的面积公式求解即可 解答:解:连接 AB和 AB,过点 B 作 BDAA,如下图所示:根据平移的性质可知,平行四边形 ABBA的面积即是曲线 ACB 描过的面积,S ABBA=AABD=CCBD=42=8 曲线 ACB 描过的面积为 8 故答案为:8 得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird 点评:本题考查平移的性质及坐标与图形的性质,难度适中,解题关键是将曲线ACB描过的面积转化为求平行四边形 ABBA的面积 三解答题(共 7 小题)17在边长为 1 的小正方形网格中,AOB 的顶点均在格点上,(1)B 点关于 y 轴的对称点坐标为(3,2);(2)将AOB 向左平移 3 个单位长度得到A1O1B1,请画出A1O1B1;(3)在(2)的条件下,A1的坐标为(2,3)考点:作图-平移变换;关于 x 轴、y 轴对称的点的坐标 专题:作图题 分析:(1)根据关于 y 轴对称的点的横坐标互为相反数,纵坐标相等解答;(2)根据网格结构找出点 A、O、B 向左平移后的对应点 A1、O1、B1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出坐标即可 解答:解:(1)B 点关于 y 轴的对称点坐标为(3,2);(2)A1O1B1如图所示;(3)A1的坐标为(2,3)故答案为:(1)(3,2);(3)(2,3)点评:本题考查了利用平移变换作图,关于 y 轴对称点的坐标,熟练掌握网格结构准确找出对应点的位置是解题的关键 18如图,ABC 中,AB=BC,将ABC 沿直线 BC平移到DCE(使 B 与 C重合),连接 BD,求BDE 的度数 得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird 考点:平移的性质 专题:计算题 分析:先根据平移的性质得 AB=DC,ABCD,ACDE,利用 AB=BC 可判断四边形 ABCD为菱形,根据菱形的性质得 ACBD,而 ACDE,所以 BDDE,则BDE=90 解答:解:ABC 沿直线 BC平移到DCE(使 B 与 C 重合),AB=DC,ABCD,ACDE,四边形 ABCD 为平行四边形,AB=BC,四边形 ABCD 为菱形,ACBD,而 ACDE,BDDE,BDE=90 点评:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点 连接各组对应点的线段平行且相等 也考查了菱形的判定与性质 19 如图,在方格纸中(小正方形的边长为 1),ABC 的三个顶点均为格点,将ABC 沿 x轴向左平移 5 个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的ABC,并直接写出点 A、B、C的坐标;(2)求出在整个平移过程中,ABC 扫过的面积 考点:作图-平移变换 专题:作图题 分析:(1)根据网格结构找出点 A、B、C的位置,然后顺次连接即可,再根据平面直角坐标系写出坐标即可;(2)观图形可得ABC 扫过的面积为四边形 AABB 的面积与ABC 的面积的和,然后列式进行计算即可得解 解答:解:(1)平移后的ABC如图所示;点 A、B、C的坐标分别为(1,5)、(4,0)、(1,0);得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird(2)由平移的性质可知,四边形 AABB 是平行四边形,ABC 扫过的面积=S四边形 AABB+SABC=BBAC+BCAC=55+35=25+=点评:本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键 20如图,已知ABC 的面积为 16,BC=8 现将ABC 沿直线 BC向右平移 a 个单位到DEF的位置(1)当 a=4 时,求ABC 所扫过的面积;(2)连接 AE、AD,设 AB=5,当ADE 是以 DE为一腰的等腰三角形时,求 a 的值 考点:平移的性质 专题:计算题 分析:(1)要求ABC 所扫过的面积,即求梯形 ABFD 的面积,根据题意,可得 AD=4,BF=28 4=12,所以重点是求该梯形的高,根据直角三角形的面积公式即可求解;(2)此题注意分两种情况进行讨论:当 AD=DE 时,根据平移的性质,则 AD=DE=AB=5;当 AE=DE 时,根据等腰三角形的性质以及勾股定理进行计算 解答:解:(1)ABC 所扫过面积即梯形 ABFD 的面积,作 AHBC 于 H,SABC=16,BCAH=16,AH=4,S梯形 ABFD=(AD+BF)AH=(4+12)4=32;(2)当 AD=DE 时,a=5;当 AE=DE 时,取 BE中点 M,则 AMBC,SABC=16,BCAM=16,8AM=16,AM=4;在 RtAMB 中,得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird BM=3,此时,a=BE=6 综上,a=5,6 点评:熟悉平移的性质以及等腰三角形的性质和直角三角形的性质 考查了学生综合运用数学的能力 21如图,将矩形 ABCD 沿对角线 AC剪开,再把ACD 沿 CA方向平移得到ACD(1)证明AADCCB;(2)若ACB=30,试问当点 C 在线段 AC上的什么位置时,四边形 ABCD是菱形,并请说明理由 考点:平移的性质;全等三角形的判定;菱形的判定 专题:几何综合题 分析:(1)根据已知利用 SAS判定AADCCB;(2)由已知可推出四边形 ABCD是平行四边形,只要再证明一组邻边相等即可确定四边形 ABCD是菱形,由已知可得到 BC=AC,AB=AC,从而得到 AB=BC,所以四边形 ABCD是菱形 解答:(1)证明:四边形 ABCD 是矩形,ACD由ACD 平移得到,AD=AD=CB,AA=CC,ADADBC DAC=BCA AADCCB(2)解:当点 C是线段 AC的中点时,四边形 ABCD是菱形 理由如下:四边形 ABCD 是矩形,ACD由ACD 平移得到,CD=CD=AB 得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird 由(1)知 AD=CB 四边形 ABCD是平行四边形 在 RtABC 中,点 C是线段 AC的中点,BC=AC 而ACB=30,AB=AC AB=BC 四边形 ABCD是菱形 点评:本题即考查了全等的判定及菱形的判定,注意对这两个判定定理的准确掌握考查了学生综合运用数学的能力 22 如图,在三角形 ABC 中,AC=BC,若将ABC 沿 BC方向向右平移 BC长的距离,得到CEF,连接 AE(1)试猜想,AE与 CF有何位置上的关系?并对你的猜想给予证明;(2)若 BC=10,tanACB=时,求 AB的长 考点:平移的性质;勾股定理;菱形的判定 专题:探究型 分析:(1)由平移可得,ACB=FEC,AC=CE=EF=AF,那么四边形 ACEF 是菱形,由邻边相等可得到是菱形,所以对角线互相垂直;(2)作出 BC边上高 AD,利用 AC,及 tanACB 的值,求得 AD,CD长,进而得到 BD长,利用勾股定理求解即可 解答:解:(1)AECF 证明:如图,连接 AF,AC=BC,又ABC 沿 BC方向向右平移 BC长的距离,AC=CE=EF=AF 四边形 ACEF 是菱形 AECF(2)如图,作 ADBC 于 D tanACB=,设 AD=3KDC=4K,在 RtADC 中,AC=10,AD2+DC2=AC2 K=2 AD=6cm,DC=8cm BD=2cm 在 RtADB 中,根据勾股定理:AB=2 cm 得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird 点评:平移前后对应线段,对应角相等,作高构造已给三角函数所在的直角三角形是常用的辅助线作法 23如图,已知ABC 的面积为 3,且 AB=AC,现将ABC 沿 CA方向平移 CA长度得到EFA(1)求四边形 CEFB的面积;(2)试判断 AF与 BE的位置关系,并说明理由;(3)若BEC=15,求 AC的长 考点:平移的性质;全等三角形的判定;菱形的判定 专题:综合题 分析:(1)根据平移的性质及平行四边形的性质可得到 SEFA=SBAF=SABC,从而便可得到四边形 CEFB 的面积;(2)由已知可证得平行四边形 EFBA 为菱形,根据菱形的对角线互相垂直平分可得到 AF与BE的位置关系为垂直;(3)作 BDAC 于 D,结合三角形的面积求解 解答:解:(1)由平移的性质得 AFBC,且 AF=BC,EFAABC 四边形 AFBC 为平行四边形 SEFA=SBAF=SABC=3 四边形 EFBC 的面积为 9;(2)BEAF 证明:由(1)知四边形 AFBC 为平行四边形 BFAC,且 BF=AC 又AE=CA 四边形 EFBA 为平行四边形又已知 AB=AC AB=AE 平行四边形 EFBA 为菱形 BEAF;得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于北京市 Earlybird(3)如上图,作 BDAC 于 D BEC=15,AE=AB EBA=BEC=15 BAC=2BEC=30 在 RtBAD 中,AB=2BD 设 BD=x,则 AC=AB=2x SABC=3,且 SA BC=ACBD=2xx=x2 x2=3 x 为正数 x=AC=2 点评:此题主要考查了全等三角形的判定,平移的性质,菱形的性质等知识点的综合运用及推理计算能力 得到的点的对应点为则点的对应点的坐标为如图将边长为个单位的等边沿边向右平移个单位得到则四边形的周长为如 图将等腰直角沿方向平移得到分面积为则如图是的中位线是中线将沿方向平移到的位置使落在边上此时点恰好落在上 题如图将边长为的正方形沿其对角线剪开再把沿着方向平移得到当两个三角形重叠部分的面积为时它移动的距离等于