欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2023年四川考研数学一试题(含答案).docx

    • 资源ID:93244649       资源大小:633.42KB        全文页数:22页
    • 资源格式: DOCX        下载积分:7.5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要7.5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2023年四川考研数学一试题(含答案).docx

    烦恼多多少少,放松必不可少;给自己一个微笑,迎来的将是一片美好!2023年四川考研数学一试题及答案一、选择题:110小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1.  的斜渐近线为(    )A.                B.    C.                    D.【答案】B.【解析】由已知,则,所以斜渐近线为.故选B.2.若的通解在上有界,则(   ).A.                B.C.                D.【答案】D.【解析】微分方程的特征方程为.若 ,则通解为;若,则通解为;若,则通解为.由于在上有界,若,则中时通解无界,若,则中时通解无界,故.时,若 ,则,通解为,在上有界.时,若,则,通解为,在上无界.综上可得,.3. 设函数由参数方程确定,则(    ).A连续,不存在            B.存在,在处不连续C.连续,不存在            D.存在,在处不连续【答案】C【解析】,故在连续.时,;时,;时,故在连续.,故不存在.故选C.4.设,且与收敛,绝对收敛是绝对收敛的(    ).A.充分必要条件                B.充分不必要条件          C.必要不充分条件            D.既非充分又非必要条件【答案】A.【解析】由已知条件可知为收敛的正项级数,进而绝对收敛.设绝对收敛,则由与比较判别法,得  绝对收玫;设绝对收敛,则由与比较判别法,得绝对收敛.故选A.5.设均为阶矩阵,记矩阵的秩分别为,则(    )A.           B.         C.   D.【答案】B【解析】由矩阵的初等变换可得,故.,故.,故.综上,比较可得B正确.6. 下列矩阵不能相似对角化的是(    )A.                          B.        C.                        D.【答案】D.【解析】由于A.中矩阵的特征值为,特征值互不相同,故可相似对角化.B.中矩阵为实对称矩阵,故可相似对角化.C.中矩阵的特征值为,且,故可相似对角化.D.中矩阵的特征值为,且,故不可相似对角化.选D.7. 已知向量,若既可由线性表示,也可由线性表示,则(    )A                       B.    C.                     D.【答案】D.【解析】设,则,对关于的方程组的系数矩阵作初等变换化为最简形,解得,故.8.设服从参数为1的泊松分布,则(    ).A.           B.                C.                D.【答案】C.【解析】方法一  由已知可得,故,故选C.方法二  由于,于是,因此.由已知可得,故,故选C.9.设为来自总体的简单随机样本,为来自总体的简单随机样本,且两样本相互独立,记,则(    )A.                     B.     C.                    D. 【答案】D.【解析】由两样本相互独立可得与相互独立,且,因此,故选D.10. 已知总体服从正态分布,其中为未知参数,为来自总体的简单随机样本,且为的无偏估计,则(    ).A.            B.           C.            D.【答案】A.【解析】由与,为来自总体的简单随机样本,相互独立,且,因而,令,所以的概率密度为,所以,又由为的无偏估计可得,即,解得,故选A.二、填空题:1116小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11当时,与是等价无穷小,则        .【答案】【解析】由题意可知,于是,即,从而.12.曲面在处的切平面方程为_       .【答案】【解析】由于在点处的法向量为,从而曲面在处的切平面方程为.13.设是周期为的周期函数,且,则        .【答案】【解析】由题意知,于是.14.设连续函数满足,则         .【答案】【解析】.15.已知向量,若,则        .【答案】【解析】,;,;,.故.16. 设随机变量与相互独立,且则        .答案】【解析】.三、解答题:1722小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)设曲线经过点,该曲线上任意一点到轴的距离等于该点处的切线在轴上的截距.(1)求;(2)求函数在的最大值.【解】(1)曲线在点处的切线方程为,于是切线在轴上的截距为,由题意可知,即,此为一阶线性微分方程,根据通解公式可得,将代入上式得,即.(2)由(1)知,于是,.令,解得唯一驻点,故.18.(本题满分12分)求函数的极值.【解】由已知可得,由解得驻点为.又,.在处,取,于是,从而在的领域内;取,于是,从而在的领域内,从而在点处不去极值;在处,于是,故不是极大值点在处,,于是,是极小值点,极小值.19.(本题满分12分)已知有界闭区域是由,所围的,为边界的外侧,计算曲面积分.【解】由高斯公式,有.由于关于坐标面对称,是关于的奇函数,因此,所以.20.(本题满分12分)设函数在上有二阶连续导数.(1)证明:若,存在,使得;(2)若在上存在极值,证明:存在,使得.【证明】(1)将在处展开为,其中介于与之间.分别令和,则,两式相加可得,又函数在上有二阶连续导数,由介值定理知存在,使得,即.(2)设在处取得极值,则.将在处展开为,其中介于与之间.分别令和,则,两式相减可得,所以,即.21.(本题满分12分)设二次型 ,(1)求可逆变换,将化为.(2)是否存在正交矩阵,使得时,将化为.【解】(1) 由配方法得.令,则,即时,规范形为 .令,则时,规范形为.故可得时化为,可逆变换,其中.(2)二次型的矩阵为.,所以的特征值为.二次型的矩阵为.,所以的特征值为.故 合同但不相似,故不存在可逆矩阵 使得.若存在正交矩阵,当时,即,即相似,矛盾,故不存在正交矩阵,使得时,化为.22.(本题满分12分)设二维随机变量的概率密度函数为(1)求和的协方差;(2)判断和是否相互独立;(3)求的概率密度函数.【解】(1)由题意可得,和的边缘概率密度分别为因此,其中,故.(2)由(1)可知,故和不相互独立.(3)设的分布函数为,概率密度为,则根据分布函数的定义有当时,;当时,;当时,.综上,故

    注意事项

    本文(2023年四川考研数学一试题(含答案).docx)为本站会员(wo****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开