初中数学知识点归纳总结(手册版).docx
初中数学学问点归纳总结一、根本运算方法1、配方法学习必备欢送下载4、判别式法与韦达定理一元二次方程ax2+bx+c=0a、b、c 属于R,a0根的判别,=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解 方程(组),解不等式,争论函数乃至几何、三角运算中都有格外广泛 的应用。所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用格外格外广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都常常用到它。2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是 恒等变形的根底,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有很多,除 中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法 等外,还有如利用拆项添项、求根分解、换元、待定系数等等。3、换元法换元法是数学中一个格外重要而且应用格外广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较简单的数学式子中,用的变元去代替原式的一个局部或改造原来的式子,使它简化,使问题易于解决。韦达定理除了一元二次方程的一个根,求另一根;两个数的和与积,求这两个数等简洁应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等 5、待定系数法在解数学问题时,假设先推断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后依据题设条件列出关于待定系数的等式,最终解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。6、构造法在解题时,我们常常会承受这样的方法,通过对条件和结论的分析, 构造关心元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学学问相互渗透,有利于问题的解决。7、反证法学习必备欢送下载反证法是一种间接证法,它是先提出一个与命题的结论相反的假设, 然后,从这个假设动身,经过正确的推理,导致冲突,从而否认相反的假设,到达确定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。关系,只需要计算,有时可以不添置补助线,即使需要添置关心线, 也很简洁考虑到。9、几何变换法在数学问题的争论中,常常运用变换法,把简单性问题转化为简洁性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元反设是反证法的根底,为了正确地作出反设,把握一些常用的互为否 定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大 (小)于、不大(小) 于;都是、不都是;至少有一个、一个也没有;至少有n 个、至多有(n 一 1)个;至多有一个、至少有两个;唯一、至少有两个。归谬是反证法的关键,导出冲突的过程没有固定的模式,但必需从反设动身,否则推导将成为无源之水,无本之木。推理必需严谨。导出的冲突有如下几种类型:与条件冲突;与的公理、定义、定理、公式冲突;与反设冲突;自相冲突。8、面积法平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法, 称为面积方法,它是几何中的一种常用方法。用归纳法或分析法证明平面几何题,其困难在添置关心线。面积法的特点是把和未知各量用面积公式联系起来,通过运算到达求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一 些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简, 化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将 图形从相等静止条件下的争论和运动中的争论结合起来,有利于对图 形本质的生疏。几何变换包括:1平移;2旋转;3对称。10、客观性题的解题方法选择题是给出条件和结论,要求依据肯定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式敏捷,可以比较全面地考察学生的根底学问和根本技能,从而增大了试卷的容量和学问掩盖面。填空题是标准化考试的重要题型之一,它同选择题一样具有考察目标明确,学问复盖面广,评卷准确快速,有利于考察学生的分析推断力量和计算力量等优点,不同的是填空题未给出答案,可以防止学生猜估答案的状况。要想快速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。学习必备欢送下载(1) 直接推演法:直接从命题给出的条件动身,运用概念、公式、定理等进展推理或运算,得出结论,选择正确答案,这就是传统的解题 方法,这种解法叫直接推演法。(2) 验证法:由题设找出适宜的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称6、直线外一点与直线上各点连接的全部线段中,垂线段最短7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行8、假设两条直线都和第三条直线平行,这两条直线也相互平行9、同位角相等,两直线平行10、内错角相等,两直线平行为验证法也称代入法。当遇到定量命题时,常用此法。(3) 特别元素法:用适宜的特别元素如数或图形代入题设条件或结论中去,从而获得解答。这种方法叫特别元素法。(4) 排解、筛选法:对于正确答案有且只有一个的选择题,依据数学学问或推理、演算,把不正确的结论排解,余下的结论再经筛选,从 而作出正确的结论的解法叫排解、筛选法。(5) 图解法:借助于符合题设条件的图形或图象的性质、特点来推断 ,作出正确的选择称为图解法。图解法是解选择题常用方法之一。(6) 分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和推断,从而选出正确的结果,为分析法。二、根本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和直线垂直11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理 三角形两边的和大于第三边16、推论 三角形两边的差小于第三边17、三角形内角和定理 三角形三个内角的和等于 180°18、推论 1 直角三角形的两个锐角互余19、推论 2 三角形的一个外角等于和它不相邻的两个内角的和20、推论 3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等学习必备欢送下载26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理 1 在角的平分线上的点到这个角的两边的距离相等28、定理 2 到一个角的两边的距离一样的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的全部点的集合30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角31、推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合33、推论 3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理 假设一个三角形有两个角相等,那么这两个角所对的边也相等等角对等边35、推论 1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于 60°的等腰三角形是等边三角形37、在直角三角形中,假设一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的全部点的集合42、定理 1 关于某条直线对称的两个图形是全等形43、定理 2 假设两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理 3 两个图形关于某直线对称,假设它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理 假设两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理 直角三角形两直角边 a、b 的平方和、等于斜边 c 的平方,即a2+b2=c247、勾股定理的逆定理 假设三角形的三边长a、b、c 有关系a2+b2=c2, 那么这个三角形是直角三角形48、定理 四边形的内角和等于 360°49、四边形的外角和等于 360°50、多边形内角和定理 n 边形的内角的和等于n-2×180°51、推论 任意多边的外角和等于 360°52、平行四边形性质定理 1 平行四边形的对角相等53、平行四边形性质定理 2 平行四边形的对边相等54、推论 夹在两条平行线间的平行线段相等55、平行四边形性质定理 3 平行四边形的对角线相互平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理 2 两组对边分别相等的四边 形是平行四边形58、平行四边形判定定理 3 对角线相互平分的四边形是平行四边形学习必备欢送下载59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理 1 矩形的四个角都是直角61、矩形性质定理 2 矩形的对角线相等62、矩形判定定理 1 有三个角是直角的四边形是矩形63、矩形判定定理 2 对角线相等的平行四边形是矩形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理 假设一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论 2经过三角形一边的中点与另一边平行的直线,必平分第64、菱形性质定理 1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线相互垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=a×b÷267、菱形判定定理 1 四边都相等的四边形是菱形68、菱形判定定理 2 对角线相互垂直的平行四边形是菱形69、正方形性质定理 1 正方形的四个角都是直角,四条边都相等70、正方形性质定理 2 正方形的两条对角线相等,并且相互垂直平分, 每条对角线平分一组对角71、定理 1 关于中心对称的两个图形是全等的72、定理 2 关于中心对称的两个图形,对称点连线都经过对称中心, 并且被对称中心平分73、逆定理 假设两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形三边81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=a+b÷2S=L×h83、(1)比例的根本性质:假设a:b=c:d,那么 ad=bc假设 ad=bc ,那么 a:b=c:d84、(2)合比性质:假设ab=cd,那么(a±b)b=(c±d)d85、(3)等比性质:假设ab=cd=mn(b+d+n0),那么(a+c+m)(b+d+n)=ab86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例87、推论 平行于三角形一边的直线截其他两边或两边的延长线,所得的对应线段成比例88、定理 假设一条直线截三角形的两边或两边的延长线所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三学习必备欢送下载角形的三边与原三角形三边对应成比例90、定理 平行于三角形一边的直线和其他两边或两边的延长线 相交,所构成的三角形与原三角形相像91、相像三角形判定定理 1两角对应相等,两三角形相像ASA92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相像93、判定定理 2两边对应成比例且夹角相等,两三角形相像SAS94、判定定理 3三边对应成比例,两三角形相像SSS95、定理 假设一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相像 96、性质定理 1相像三角形对应高的比,对应中线的比与对应角平分线的比都等于相像比97、性质定理 2 相像三角形周长的比等于相像比98、性质定理 3 相像三角形面积的比等于相像比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理 不在同始终线上的三点确定一个圆。110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论 1平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论 2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论 在同圆或等圆中,假设两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116、定理 一条弧所对的圆周角等于它所对的圆心角的一半117、推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等学习必备欢送下载118、推论 2 半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论 3假设三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它两条线段的比例中项132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等的内对角121、直线L 和O 相交dr直线L 和O 相切d=r直线L 和O 相离dr122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理 圆的切线垂直于经过切点的半径124、推论 1 经过圆心且垂直于切线的直线必经过切点125、推论 2 经过切点且垂直于切线的直线必经过圆心126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理 弦切角等于它所夹的弧对的圆周角129、推论 假设两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论 假设弦与直径垂直相交,那么弦的一半是它分直径所成的134、假设两个圆相切,那么切点肯定在连心线上135、两圆外离dR+r两圆外切d=R+r两圆相交R-rdR+r(Rr)两圆内切d=R-r(Rr)两圆内含dR-r(Rr) 136、定理 相交两圆的连心线垂直平分两圆的公共弦137、定理 把圆分成n(n3):依次连结各分点所得的多边形是这个圆的内接正n 边形经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n 边形的每个内角都等于n-2×180°n140、定理 正 n 边形的半径和边心距把正n 边形分成 2n 个全等的直角三角形141、正n 边形的面积Sn=pnrn2p 表示正n 边形的周长学习必备欢送下载142、正三角形面积3a4a 表示边长143、假设在一个顶点四周有 k 个正n 边形的角,由于这些角的和应为360°,因此k×(n-2)180°n=360°化为n-2(k-2)=4144、弧长计算公式:L=n 兀 R180145、扇形面积公式:S 扇形=n 兀R2360=LR2146、内公切线长= d-(R-r)外公切线长= d-(R+r)三、常用数学公式公式分类公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|a|+|b|a-b|a|+|b|a|b<=>-bab|a-b|a|-|b| -|a|a|a|一元二次方程的解-b+(b2-4ac)/2a-b-(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a注:韦达定理 判别式b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac<0注:方程没有实根,有共轭复数根某些数列前n 项和1+2+3+4+5+6+7+8+9+n=n(n+1)/21+3+5+7+9+11+13+15+(2n-1)=n22+4+6+8+10+12+14+(2n)=n(n+1)12+22+32+42+52+62+72+82+n2=n(n+1)(2n+1)/613+23+33+43+53+63+n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB注:角B 是边a 和边c 的夹角