2022年山东省济南市数学九年级第一学期期末检测试题含解析.doc
-
资源ID:93385495
资源大小:1,007.54KB
全文页数:20页
- 资源格式: DOC
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年山东省济南市数学九年级第一学期期末检测试题含解析.doc
2022-2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1下列图形中,绕某个点旋转72度后能与自身重合的是()ABCD2如图,O的直径BA的延长线与弦DC的延长线交于点E,且CEOB,已知DOB72°,则E等于()A18°B24°C30°D26°3如图,中,将绕点逆时针旋转后得到,点经过的路径为则图中涂色部分的面积为( )ABCD4如图,点O在直线上,若,则的度数为( )A65°B55°C45°D35°5方程x2+2x-5=0经过配方后,其结果正确的是ABCD6将二次函数化成的形式为( )ABCD7在半径等于5 cm的圆内有长为cm的弦,则此弦所对的圆周角为A60°B120°C60°或120°D30°或120°8要使分式有意义,则x应满足的条件是()Ax2Bx2Cx0Dx29如图,四边形ABCD内接于O,AB是O的直径,若BAC20°,则ADC的度数是()A90°B100°C110°D130°10下列语句中,正确的是()相等的圆周角所对的弧相等;同弧或等弧所对的圆周角相等;平分弦的直径垂直于弦,并且平分弦所对的弧;圆内接平行四边形一定是矩形ABCD11二次函数的图象如图所示,其对称轴为,有下列结论:;对任意的实数,都有,其中正确的是()ABCD12对于反比例函数,下列说法不正确的是()A点(2,1)在它的图象上B它的图象在第一、三象限C当x0时,y随x的增大而增大D当x0时,y随x的增大而减小二、填空题(每题4分,共24分)13_14小亮在上午8时,9时30分,10时,12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为_15不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_16已知在反比例函数图象的任一分支上,都随的增大而增大,则的取值范围是_17进价为元/件的商品,当售价为元/件时,每天可销售件,售价每涨元,每天少销售件,当售价为_元时每天销售该商品获得利润最大,最大利润是_元18如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_三、解答题(共78分)19(8分)已知如图所示,A,B,C是O上三点,AOB=120°,C是 的中点,试判断四边形OACB形状,并说明理由20(8分)如图,四边形ABCD内接于O,AB=17,CD=10,A=90°,cosB=,求AD的长21(8分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元2016年投入教育经费8640万元假设该县这两年投入教育经费的年平均增长率相同(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元22(10分)如图,四边形是平行四边形,点为边的中点,点在的延长线上,且点在线段上,且,垂足为(1)若,且,求的长;(2)求证:23(10分)如图,在平面直角坐标系中,AOB=90°,ABx轴,OA=2,双曲线经过点A将AOB绕点A顺时针旋转,使点O的对应点D落在x轴的负半轴上,若AB的对应线段AC恰好经过点O(1)求点A的坐标和双曲线的解析式;(2)判断点C是否在双曲线上,并说明理由24(10分)综合与实践问题背景:综合与实践课上,同学们以两个全等的三角形纸片为操作对象,进行相一次相关问题的研究 下面是创新小组在操作过程中研究的问题, 如图一,ABCDEF, 其中ACB=90°,BC=2,A=30°操作与发现: (1)如图二,创新小组将两张三角形纸片按如图示的方式放置,四边形ACBF的形状是 ,CF= ; (2)创新小组在图二的基础上,将DEF纸片沿AB方向平移至图三的位置,其中点E与AB的中点重合连接CE,BF四边形BCEF的形状是 ,CF= 操作与探究 :(3)创新小组在图三的基础上又进行了探究,将DEF纸片绕点E逆时针旋转至DE与BC平行的位置,如图四所示,连接AF, BF 经过观察和推理后发现四边形ACBF也是矩形,请你证明这个结论25(12分)如图,在ABC中,D为AB边上一点,BACD(1)求证:ABCACD;(2)如果AC6,AD4,求DB的长26如图,王乐同学在晩上由路灯走向路灯当他行到处时发现,他往路灯下的影长为2m,且恰好位于路灯的正下方,接着他又走了到处,此时他在路灯下的影孑恰好位于路灯的正下方(已知王乐身高,路灯高)(1)王乐站在处时,在路灯下的影子是哪条线段?(2)计算王乐站在处时,在路灯下的影长;(3)计算路灯的高度参考答案一、选择题(每题4分,共48分)1、B【解析】根据旋转的定义即可得出答案.【详解】解:A旋转90°后能与自身重合,不合题意;B旋转72°后能与自身重合,符合题意;C旋转60°后能与自身重合,不合题意;D旋转45°后能与自身重合,不合题意;故选B【点睛】本题考查的是旋转:如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形2、B【分析】根据圆的半径相等可得等腰三角形,根据三角形的外角的性质和等腰三角形等边对等角可得关于E的方程,解方程即可求得答案【详解】解:如图,连接CO,CEOBCO=OD,E1,2DD=2E+12E3E+DE+2E3E由372°,得3E72°解得E24°故选:B【点睛】本题考查了圆的认识,等腰三角形的性质,三角形的外角的性质.能利用圆的半径相等得出等腰三角形是解题关键3、A【分析】先根据勾股定理得到AB,再根据扇形的面积公式计算出,由旋转的性质得到RtADERtACB,于是【详解】ACB=90°,AC=BC=1,又RtABC绕A点逆时针旋转30°后得到RtADE,RtADERtACB,故选:A【点睛】本题主要考查的是旋转的性质、扇形的面积公式,勾股定理的应用,将阴影部分的面积转化为扇形ABD的面积是解题的关键4、B【解析】先根据,求出的度数,再由即可得出答案【详解】解:,故选:B【点睛】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键5、C【详解】解:根据配方法的意义,可知在方程的两边同时加减一次项系数的一半的平方,可知,即,配方为.故选:C.【点睛】此题主要考查了配方法,解题关键是明确一次项的系数,然后在方程的两边同时加减一次项系数的一半的平方,即可求解.6、C【分析】利用配方法即可将二次函数转化为顶点式【详解】故选:C【点睛】本题主要考查二次函数的顶点式,掌握配方法是解题的关键7、C【分析】根据题意画出相应的图形,由ODAB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在RtAOD中,利用锐角三角函数定义及特殊角的三角函数值求出AOD的度数,进而确定出AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数【详解】如图所示,ODAB,D为AB的中点,即AD=BD=,在RtAOD中,OA=5,AD=,sinAOD=,又AOD为锐角,AOD=60°,AOB=120°,ACB=AOB=60°,又圆内接四边形AEBC对角互补,AEB=120°,则此弦所对的圆周角为60°或120°故选C【点睛】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键8、B【解析】本题主要考查分式有意义的条件:分母不能为1【详解】解:x21,x2,故选B【点睛】本题考查的是分式有意义的条件,当分母不为1时,分式有意义9、C【解析】根据三角形内角和定理以及圆内接四边形的性质即可解决问题;【详解】解:AB是直径,ACB=90°,BAC=20°,B=90°-20°=70°,ADC+B=180°,ADC=110°,故选C【点睛】本题考查圆内接四边形的性质、三角形的内角和定理、圆周角定理等知识,解题的关键是熟练掌握基本知识10、C【分析】根据圆周角定理、垂径定理、圆内接四边形的性质定理判断【详解】在同圆或等圆中,相等的圆周角所对的弧相等,本说法错误;同弧或等弧所对的圆周角相等,本说法正确;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,本说法错误;圆内接平行四边形一定是矩形,本说法正确;故选:C【点睛】本题考查的是命题的真假判断,掌握圆周角定理、垂径定理、圆内接四边形的性质定理是解题的关键11、B【分析】根据二次函数的图象与性质(对称性、与x轴、y轴的交点)、二次函数与一元二次方程的关系逐个判断即可【详解】抛物线的开口向下对称轴为,异号,则抛物线与y轴的交点在y轴的上方,则正确由图象可知,时,即则,错误由对称性可知,和的函数值相等则时,即,错误可化为关于m的一元二次方程的根的判别式则二次函数的图象特征:抛物线的开口向下,与x轴只有一个交点因此,即,从而正确综上,正确的是故选:B【点睛】本题考查了二次函数的图象与性质(对称性、与x轴、y轴的交点)、二次函数与一元二次方程的关系,熟练掌握函数的图象与性质是解题关键12、C【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x0时,y随x的增大而减小,所以C错误;D中,当x0时,y随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化二、填空题(每题4分,共24分)13、【分析】将特殊角的三角函数值代入求解【详解】解:,故答案为:【点睛】本题考查特殊角的三角函数值的混合运算,熟记特殊角的三角函数值是解题关键14、上午8时【解析】解:根据地理知识,北半球不同时刻太阳高度角不同影长也不同,规律是由长变短,再变长故答案为上午8时点睛:根据北半球不同时刻物体在太阳光下的影长是由长变短,再变长来解答此题15、【解析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【详解】解:袋子中共有7个球,其中红球有3个,从袋子中随机取出1个球,它是红球的概率是,故答案为:【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A) 16、【分析】根据反比例函数的图象与性质即可求出k的范围【详解】解:由题意可知:,故答案为:【点睛】本题考查反比例函数的性质,解题的关键是熟练运用反比例函数的性质,本题属于基础题型17、55,3【解析】试题分析:设售价为元,总利润为元,则,时,获得最大利润为3元.故答案为55,3考点:3二次函数的性质;3二次函数的应用18、 【解析】试题解析:共6个数,小于5的有4个,P(小于5)=故答案为三、解答题(共78分)19、AOBC是菱形,理由见解析.【分析】连接OC,根据等边三角形的判定及圆周角定理进行分析即可【详解】AOBC是菱形,理由如下:连接OC, C是 的中点AOC=BOC=×120°=60°,CO=BO(O的半径),OBC是等边三角形,OB=BC,同理OCA是等边三角形,OA=AC,又OA=OB,OA=AC=BC=BO,AOBC是菱形【点睛】本题利用了等边三角形的判定和性质,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半20、AD=1【解析】根据圆内接四边形的对角互补得出C=90°,ABC+ADC=180°作AEBC于E,DFAE于F,则CDFE是矩形,EF=CD=2解RtAEB,得出BE=ABcosABE=,AE=,那么AF=AE-EF=再证明ABC+ADF=90°,根据互余角的互余函数相等得出sinADF=cosABC=解RtADF,即可求出AD=1【详解】解:四边形ABCD内接于O,A=90°,C=180°-A=90°,ABC+ADC=180°作AEBC于E,DFAE于F,则CDFE是矩形,EF=CD=2在RtAEB中,AEB=90°,AB=17,cosABC=,BE=ABcosABE=,AE=,AF=AE-EF=ABC+ADC=180°,CDF=90°,ABC+ADF=90°,cosABC=,sinADF=cosABC=在RtADF中,AFD=90°,sinADF=,AD=【点睛】本题考查了圆内接四边形的性质,矩形的判定与性质,勾股定理,解直角三角形,求出AF=以及sinADF=是解题的关键21、(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2 =-2.2(舍去)所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用22、(1);(2)证明见解析【分析】(1)由勾股定理求出BF,进而得出AE的长,再次利用勾股定理得出AB的长,最后根据平行四边形的性质与勾股定理求出AD的长;(2)设,根据勾股定理求出CH的长,利用直角三角形斜边上的中线是斜边的一半得出EH的长,进而得出CE的长,根据得出,利用勾股定理求出BG,GH的长,根据求出BF,进而得证【详解】(1)解:,且,由勾股定理知,由勾股定理知,四边形是平行四边形,由勾股定理知,;(2)证明:点为边的中点,设,由勾股定理知,是斜边上的中线,即,即,在中,解得,易证,即,【点睛】本题考查平行四边形的性质,相似三角形的判定与性质,勾股定理,直角三角形斜边中线的性质等,熟练掌握相似三角形的判定与勾股定理是解题的关键23、(1),双曲线的解析式为;(2)点在双曲线上,理由见解析.【分析】(1)根据旋转的性质和平行线的性质,得到,得到AOD是等边三角形,根据特殊角的三角函数,求出点A的坐标,然后得到双曲线的解析式;(2)先求出OC的长度,然后利用特殊角的三角函数求出点C的坐标,然后进行判断即可.【详解】解:(1)过点A作轴,垂足为轴,有旋转的性质可知,为等边三角形,点的坐标为由题意知,双曲线的解析式为:(2)点在双曲线上,理由如下:过点作轴,垂足为由(1)知,点的坐标为将代入中,点在双曲线上【点睛】本题考查了反比例函数图象上点的坐标特征,旋转的性质,等边三角形的判定和性质,特殊角的三角函数等,求得AOD是等边三角形是解题的关键24、(1)矩形,4 ;(2)菱形,;(3)详见解析【分析】(1)由题意及图形可直接解答;(2)根据题意及图形,结合直角三角形的性质定理可直接得到答案;(3)根据旋转的性质及题意易得,然后得到四边形ACBF为平行四边形,最后问题得证【详解】(1)如图所示:ABCDEF, 其中ACB=90°,BC=2,A=30°,四边形ACBF是矩形,AB=4,AB=CF=4;故答案为:矩形,4 ;(2)如图所示:ABCDEF, 其中ACB=90°,BC=2,A=30°,四边形ECBF是平行四边形,点E与AB的中点重合,CE=BE,是等边三角形,EC=BC,四边形ECBF是菱形,CF与EB互相垂直且平分,故答案为:菱形,;(3)证明:如图所示:为等边三角形四边形ACBF为平行四边形四边形ACBF为矩形【点睛】本题主要考查特殊平行四边形的性质及判定、全等三角形的性质,关键是由题意图形的变化及三角形全等的性质得到线段的等量关系,然后结合特殊平行四边形的判定方法证明即可25、(1)见解析;(2)DB=5.【分析】(1)根据两角相等的两个三角形相似即可证得结论;(2)根据相似三角形的对应边成比例即可求得AB的长,进而可得结果.【详解】解:(1)BACD,AA,ABCACD;(2)ABCACD,即,解得AB=9,DB=ABAD=5.【点睛】本题考查了相似三角形的判定和性质,属于基础题型,熟练掌握相似三角形的判定和性质是解题关键.26、(1)线段CP为王乐在路灯B下的影子;(2)王乐站在Q处时,在路灯A下的影长为1.5m;(3)路灯A的高度为12m【分析】(1)影长为光线与物高相交得到的阴影部分;(2)易得RtCEPRtCBD,利用对应边成比例可得QD长;(3)易得RtDFQRtDAC,利用对应边成比例可得AC长,也就是路灯A的高度【详解】解:(1)线段CP为王乐在路灯B下的影子(2)由题意得RtCEPRtCBD,解得:QD=1.5m所以王乐站在Q处时,在路灯A下的影长为1.5m(3)由题意得RtQDFRtCDA,解得:AC=12m所以路灯A的高度为12m.【点睛】本题考查了中心投影及相似的判定和性质,利用两三角形相似,对应边成比例来求线段的长