2023届北京市昌平区名校九年级数学第一学期期末达标测试试题含解析.doc
-
资源ID:93386245
资源大小:1.01MB
全文页数:21页
- 资源格式: DOC
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届北京市昌平区名校九年级数学第一学期期末达标测试试题含解析.doc
2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1如图,和都是等腰直角三角形,的顶点在的斜边上,、交于,若,则的长为( )ABCD2下列方程中,是一元二次方程的是()Ax+0Bax2+bx+c0Cx2+10Dxy103 “射击运动员射击一次,命中靶心”这个事件是( )A确定事件 B必然事件 C不可能事件 D不确定事件4如图,一人站在两等高的路灯之间走动,为人在路灯照射下的影子,为人在路灯照射下的影子当人从点走向点时两段影子之和的变化趋势是( )A先变长后变短B先变短后变长C不变D先变短后变长再变短5如图,已知四边形是平行四边形,下列结论不正确的是( )A当时,它是矩形B当时,它是菱形C当时,它是菱形D当时,它是正方形6一个凸多边形共有 20 条对角线,它是( )边形A6B7C8D97对于二次函数的图象,下列说法正确的是A开口向下;B对称轴是直线x1;C顶点坐标是(1,2);D与x轴没有交点8如图,在RtABC中,ACB=90°,如果AC=3,AB=5,那么sinB等于()ABCD9在RtABC中,C90°,各边都扩大2倍,则锐角A的锐角三角函数值( )A扩大2倍B缩小C不变D无法确定10如图,在ABC中,DEFGBC,且AD:AF:AB=1:2:4,则SADE:S四边形DFGE:S四边形FBCG等于( )A1:2:4B1:4:16C1:3:12D1:3:711下列事件是必然事件的是( )A打开电视机,正在播放篮球比赛B守株待兔C明天是晴天D在只装有5个红球的袋中摸出1球,是红球.12将抛物线yx22向右平移3个单位长度,再向上平移2个单位长度,则所得抛物线的解析式为()Ay(x+3)2By(x3)2Cy(x+2)2+1Dy(x2)2+1二、填空题(每题4分,共24分)13抛物线yx24x+3与x轴交于A、B,与y轴交于C,则ABC的面积_14如图,在正方形中,将绕点顺时针旋转得到,此时与交于点,则的长度为_.15如图,ABC的外心的坐标是_.16当_时,关于的一元二次方程有两个实数根.17一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系已知两车相遇时快车比慢车多行驶60千米若快车从甲地到达乙地所需时间为t时,则此时慢车与甲地相距_千米18如图,已知射线,点从B点出发,以每秒1个单位长度沿射线向右运动;同时射线绕点顺时针旋转一周,当射线停止运动时,点随之停止运动.以为圆心,1个单位长度为半径画圆,若运动两秒后,射线与恰好有且只有一个公共点,则射线旋转的速度为每秒_度.三、解答题(共78分)19(8分)某校九年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作已知该水果的进价为每千克8元,下面是他们在活动结束后的对话小丽;如果以每千克10元的价格销售,那么每天可售出300千克小强:如果每千克的利润为3元,那么每天可售出250千克小红:如果以每千克13元的价格销售,那么每天可获取利润750元(1)已知该水果每天的销售量y(千克)与销售单价x(元)之间存在一次的函数关系,请根据他们的对话,判决该水果每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系,并求出这个函数关系式;(2)设该超市销售这种水果每天获取的利润为W(元),求W(元)与x(元)之间的函数关系式当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?(3)当销售利润为600元并且尽量减少库存时,销售单价为每千克多少元?20(8分)如图所示的直面直角坐标系中,的三个顶点坐标分别为,(1)将绕原点逆时针旋转画出旋转后的;(2)求出点到点所走过的路径的长21(8分)在平面直角坐标系xOy中,已知抛物线,其顶点为A(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)直线BC平行于x轴,交这条抛物线于B、C两点(点B在点C左侧),且,求点B坐标22(10分)已知关于x的一元二次方程x2+x+m11 (1)当m1时,求方程的实数根(2)若方程有两个不相等的实数根,求实数m的取值范围23(10分)倡导全民阅读,建设书香社会(调查)目前,某地纸媒体阅读率为40%,电子媒体阅读率为80%,综合媒体阅读率为90%(百度百科)某种媒体阅读率,指有某种媒体阅读行为人数占人口总数的百分比;综合阅读率,在纸媒体和电子体中,至少有一种阅读行为的人数占人口总数的百分比,它反映了一个国家或地区的阅读水平(问题解决)(1)求该地目前只有电子媒体阅读行为人数占人口总数的百分比;(2)国家倡导全民阅读,建设书香社会预计未来两个五年中,若该地每五年纸媒体阅读人数按百分数x减少,综合阅读人数按百分数x增加,这样十年后,只读电子媒体的人数比目前增加53%,求百分数x24(10分)为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?25(12分)如图,在平面直角坐标系中,抛物线交轴、两点(在的左侧),且,与轴交于,抛物线的顶点坐标为.(1)求、两点的坐标;(2)求抛物线的解析式;(3)过点作直线轴,交轴于点,点是抛物线上、两点间的一个动点(点不与、两点重合),、与直线分别交于点、,当点运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.26某宾馆有客房间供游客居住,当每间客房的定价为每天元时,客房恰好全部住满;如果每间客房每天的定价每增加元,就会减少间客房出租设每间客房每天的定价增加元,宾馆出租的客房为间求:关于的函数关系式;如果某天宾馆客房收入元,那么这天每间客房的价格是多少元?参考答案一、选择题(每题4分,共48分)1、B【分析】连接BD,自F点分别作,交AD、BD于G、H点,通过证明,可得,根据勾股定理求出AB的长度,再根据角平分线的性质可得,根据三角形面积公式可得,代入中即可求出BF的值【详解】如图,连接BD,自F点分别作,交AD、BD于G、H点和都是等腰直角三角形在ECA和DCB中 在RtADB中,DF是ADB的角平分线ADF底边AF上的高h与BDF底边BF上的高h相同故答案为:B【点睛】本题考查了三角形的综合问题,掌握等腰直角三角形的性质、全等三角形的性质以及判定定理、勾股定理、角平分线的性质、三角形面积公式是解题的关键2、C【解析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1【详解】A.该方程不是整式方程,故本选项不符合题意B.当a1时,该方程不是关于x的一元二次方程,故本选项不符合题意C.该方程符合一元二次方程的定义,故本选项不符合题意D.该方程中含有两个未知数,属于二元一次方程,故本选项不符合题意故选:C【点睛】本题考查了一元二次方程的性质和判定,掌握一元二次方程必须满足的条件是解题的关键3、D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D考点:随机事件4、C【分析】连接DF,由题意易得四边形CDFE为矩形.由DFGH,可得.又ABCD,得出,设=a,DF=b(a,b为常数),可得出,从而可以得出,结合可将DH用含a,b的式子表示出来,最后得出结果.【详解】解:连接DF,已知CD=EF,CDEG,EFEG,四边形CDFE为矩形. DFGH,又ABCD,.设=a,DF=b,GH=,a,b的长是定值不变,当人从点走向点时两段影子之和不变故选:C.【点睛】本题考查了相似三角形的应用:利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度5、D【解析】根据已知及各个四边形的判定对各个选项进行分析从而得到最后答案【详解】A. 正确,对角线相等的平行四边形是矩形;B. 正确,对角线垂直的平行四边形是菱形;C. 正确,有一组邻边相等的平行四边形叫做菱形;D. 不正确,有一个角是直角的平行四边形叫做矩形。故选D【点睛】此题考查平行四边形的性质,矩形的判定,正方形的判定,解题关键在于掌握判定法则6、C【分析】根据多边形的对角线的条数公式列式进行计算即可求解【详解】解:设该多边形的边数为n,由题意得:,解得:(舍去)故选:C【点睛】本题主要考查了多边形的对角线公式,熟记公式是解题的关键7、D【分析】由抛物线解析式可直接得出抛物线的开口方向、对称轴、顶点坐标,可判断A、B、C,令y0利用判别式可判断D,则可求得答案【详解】y2(x1)22,抛物线开口向上,对称轴为x1,顶点坐标为(1,2),故A、B、C均不正确,令y0可得2(x1)220,可知该方程无实数根,故抛物线与x轴没有交点,故D正确;故选:D【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在ya(xh)2k中,对称轴为xh,顶点坐标为(h,k)8、A【解析】直接利用锐角三角函数关系得出sinB的值【详解】在RtABC中,ACB=90°,AC=3,AB=5,sinB= 故选A【点睛】此题主要考查了锐角三角函数关系,正确把握定义是解题关键9、C【解析】在RtABC中,C90°,在RtABC中,各边都扩大2倍得:,故在RtABC中,各边都扩大2倍,则锐角A的锐角三角函数值不变.故选C.【点睛】本题考查了锐角三角函数,根据锐角三角函数的概念:锐角A的各个三角函数值等于直角三角形的边的比值可知,三角形的各边都扩大(缩小)多少倍,锐角A的三角函数值是不会变的.10、C【分析】由于DEFGBC,那么ADEAFGABC,根据AD:AF:AB=1:2:4,可得出三个相似三角形的面积比,进而得出ADE、四边形DFGE、四边形FBCG的面积比.【详解】 设ADE的面积为a,则AFG和ABC的面积分别是4a、16a;则分别是3a、12a;则SADE:S四边形DFGE:S四边形FBCG= 1:3:12故选C.【点睛】本题主要考察相似三角形,解题突破口是根据平行性质推出ADEAFGABC.11、D【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可【详解】解:打开电视机,正在播放篮球比赛是随机事件,不符合题意;守株待兔是随机事件,不符合题意;明天是晴天是随机事件,不符合题意在只装有5个红球的袋中摸出1球,是红球是必然事件,D符合题意.故选:D【点睛】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件12、B【分析】利用二次函数图象的平移规律,左加右减,上加下减,进而得出答案【详解】将抛物线yx22向右平移3个单位长度,得到平移后解析式为:y(x3)22,再向上平移2个单位长度所得的抛物线解析式为:y(x3)22+2,即y(x3)2;故选:B【点睛】考核知识点:二次函数图象.理解性质是关键.二、填空题(每题4分,共24分)13、1【分析】先根据题意求出AB的长。再得到C点坐标,故可求解【详解】解:y0时,0x24x+1,解得x11,x21线段AB的长为2,与y轴交点C(0,1),以AB为底的ABC的高为1,SABC×2×11,故答案为:1【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知函数与坐标轴交点的求解方法14、【分析】利用正方形和旋转的性质得出AD=AE,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可【详解】解:由题意可得出:BDC=45°,DAE=90°,DEA=45°,AD=AE,在正方形ABCD中,AD=1,AB=AB=1,BD=,AD=,在RtDAE中,DE=故答案为:.【点睛】此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出AD的长是解题关键15、【解析】试题解析:ABC的外心即是三角形三边垂直平分线的交点,作图得:EF与MN的交点O即为所求的ABC的外心,ABC的外心坐标是(2,1)16、【分析】根据一元二次方程根与系数的关系即可得出答案.【详解】关于的一元二次方程有两个实数根解得:故答案为:【点睛】本题考查的是一元二次方程根与系数的关系,当时,有两个实数根;当时,没有实数根.17、【分析】求出相遇前y与x的关系式,确定出甲乙两地的距离,进而求出两车的速度,即可求解【详解】设AB所在直线的解析式为:ykx+b,把(1.5,70)与(2,0)代入得: ,解得:,AB所在直线的解析式为:y-140x+280,令x0,得到y280,即甲乙两地相距280千米,设两车相遇时,乙行驶了x千米,则甲行驶了(x+60)千米,根据题意得:x+x+60280,解得:x110,即两车相遇时,乙行驶了110千米,甲行驶了170千米,甲车的速度为85千米/时,乙车速度为55千米/时,根据题意得:28055×(280÷85)(千米)则快车到达乙地时,慢车与甲地相距千米故答案为:【点睛】本题主要考查根据函数图象的信息解决行程问题,根据函数的图象,求出AB所在直线的解析式是解题的关键.18、30或60【分析】射线与恰好有且只有一个公共点就是射线与相切,分两种情况画出图形,利用圆的切线的性质和30°角的直角三角形的性质求出旋转角,然后根据旋转速度=旋转的度数÷时间即得答案.【详解】解:如图1,当射线与在射线BA上方相切时,符合题意,设切点为C,连接OC,则OCBP,于是,在直角BOC中,BO=2,OC=1,OBC=30°,1=60°,此时射线旋转的速度为每秒60°÷2=30°; 如图2,当射线与在射线BA下方相切时,也符合题意,设切点为D,连接OD,则ODBP,于是,在直角BOD中,BO=2,OD=1,OBD=30°,MBP=120°,此时射线旋转的速度为每秒120°÷2=60°;故答案为:30或60.【点睛】本题考查了圆的切线的性质、30°角的直角三角形的性质和旋转的有关概念,正确理解题意、熟练掌握基本知识是解题的关键.三、解答题(共78分)19、(1)y=50x+800(x0);(2)单价为12元时,每天可获得的利润最大,最大利润是800元;(3)每千克10元或14元【解析】本题是通过构建函数模型解答销售利润的问题依据题意首先确定学生对话中一次函数关系;然后根据销售利润=销售量×(售价-进价),列出平均每天的销售利润w(元)与销售价x之间的函数关系,再依据函数的增减性求得最大利润【详解】(1)当销售单价为13元/千克时,销售量为:750÷(138)=150千克,设:y与x的函数关系式为:y=kx+b(k0)把(10,300),(13,150)分别代入得:k=50,b=800y与x的函数关系式为:y=50x+800(x0)(2)利润=销售量×(销售单价进价),由题意得W=(50x+800)(x8)=50(x12)2+800,当销售单价为12元时,每天可获得的利润最大,最大利润是800元(3)将w=600代入二次函数W=(50x+800)(x8)=600解得:x1=10,x2=14即:当销售利润为600元时,销售单价为每千克10元或14元【点睛】本题考查了二次函数的性质在实际生活中的应用最大销售利润的问题常利用函数的增减性来解答,我们首先要读懂题意,确定变量,建立函数模型,然后结合实际选择最优方案20、(1)见解析;(2)【分析】(1)根据旋转角、旋转方向、旋转中心找到各顶点的对应点顺次连结即可;(2)根据勾股定理先求出OB的长度,然后根据弧长公式列式运算即可【详解】解:(1)所作图形如下图所示:即为所求;(2),OB=,点到点所走过的路径的长为:【点睛】本题考查了旋转作图,掌握画图的方法和图形的特点是解题的关键;注意旋转时点经过的路径为一段弧长21、(1)开口方向向下,点A的坐标是,在对称轴直线左侧部分是上升的,右侧部分是下降的;(2)点B的坐标为【分析】(1)先化为顶点式,然后由二次函数的性质可求解;(2)如图,设直线与对称轴交于点,则,设线段的长为,则,可求点坐标,代入解析式可求的值,即可求点坐标【详解】解:(1)抛物线的开口方向向下,顶点的坐标是,抛物线的变化情况是:在对称轴直线左侧部分是上升的,右侧部分是下降的;(2)如图,设直线与对称轴交于点,则设线段的长为,则,点的坐标可表示为,代入,得解得(舍,点的坐标为【点睛】本题是二次函数综合题,考查了二次函数的性质,二次函数的应用,利用参数求点坐标是本题的关键22、(1)x1,x2(2)m 【分析】(1)令m=1,用公式法求出一元二次方程的根即可;(2)根据方程有两个不相等的实数根,计算根的判别式得关于m的不等式,求解不等式即可【详解】(1)当m=1时,方程为x2+x1=1=124×1×(1)=51,x,x1,x2(2)方程有两个不相等的实数根,1,即124×1×(m1)=14m+4=54m1,m【点睛】本题考查了一元二次方程的解法、根的判别式一元二次方程根的判别式=b24ac23、(1)该社区有电子媒体阅读行为人数占人口总数的百分比为50%(2)x为10%【分析】(1)根据题意,利用某地传统媒体阅读率为80%,数字媒体阅读率为40%,而综合阅读率为90%,得出等式求出答案;(2)根据综合阅读人数纸媒体阅读人数只读电子媒体的人数,结合该地每五年纸媒体阅读人数按百分数x减少,综合阅读人数按百分数x增加列出方程即可求出答案【详解】解:(1)设某地人数为a,既有传统媒体阅读又有数字媒体阅读的人数为y,则传统媒体阅读人数为0.8a,数字媒体阅读人数为0.4a依题意得:0.8a+0.4ay0.9a,解得y0.3a,传统媒体阅读又有数字媒体阅读的人数占总人口总数的百分比为30%则该社区有电子媒体阅读行为人数占人口总数的百分比为80%30%50%(2)依题意得:0.9a(1+x)2+0.4a(1x)20.5a(1+0.53),整理得:5x2+26x2.650,解得:x10.110%,x25.3(舍去),答:x为10%【点睛】此题主要考查了一元二次方程的应用,根据题意得出正确等量关系是解题关键24、(1)这两年藏书的年均增长率是20%;(2)到2018年底中外古典名著的册数占藏书总量的10%【分析】(1)根据题意可以列出相应的一元二次方程,从而可以得到这两年藏书的年均增长率; (2)根据题意可以求出这两年新增加的中外古典名著,从而可以求得到2018年底中外古典名著的册数占藏书总量的百分之几.【详解】解:(1)设这两年藏书的年均增长率是,解得,(舍去),答:这两年藏书的年均增长率是20%;(2)在这两年新增加的图书中,中外古典名著有(万册),到2018年底中外古典名著的册数占藏书总量的百分比是:,答:到2018年底中外古典名著的册数占藏书总量的10%【点睛】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答,这是一道典型的增长率问题.25、(1)点坐标,点坐标;(2);(3)是定值,定值为8【分析】(1)由OA、OB的长可得A、B两点坐标;(2)结合题意可设抛物线的解析式为,将点C坐标代入求解即可;(3)过点作轴交轴于,设,可用含t的代数式表示出,的长,利用,的性质可得EF、EG的长,相加可得结论.【详解】(1)由抛物线交轴于、两点(在的左侧),且,得点坐标,点坐标;(2)设抛物线的解析式为,把点坐标代入函数解析式,得,解得,抛物线的解析式为;(3)(或是定值),理由如下:过点作轴交轴于,如图设,则,又,【点睛】本题考查了抛物线与三角形的综合,涉及的知识点主要有抛物线的解析式、相似三角形的判定和性质,灵活利用点坐标表示线段长是解题的关键.26、(1)y=-x+200;(2)这天的每间客房的价格是元或元【解析】(1)根据题意直接写出函数关系式,然后整理即可;(2)用每间房的收入(180+x),乘以出租的房间数(-x+200)等于总收入列出方程求解即可.【详解】(1)设每间客房每天的定价增加x元,宾馆出租的客房为y间,根据题意,得:y=200-4×,y=-x+200;(2)设每间客房每天的定价增加x元,根据题意,得(180+x)(-x+200)=38400,整理后,得x2-320x+6000=0,解得x1=20,x2=300,当x=20时,x+180=200(元),当x=300时,x+180=480(元),答:这天的每间客房的价格是200元或480元【点睛】本题主要考查一元二次方程的应用,列一元二次方程,用因式分解法解一元二次方程,解题关键在于根据题意准确列出一元二次方程.