2023届内蒙古巴彦淖尔市杭锦全旗九年级数学第一学期期末考试试题含解析.doc
-
资源ID:93392303
资源大小:1.29MB
全文页数:22页
- 资源格式: DOC
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届内蒙古巴彦淖尔市杭锦全旗九年级数学第一学期期末考试试题含解析.doc
2022-2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1如图,某小区规划在一个长50米,宽30米的矩形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪面积都为178平方米,设道路宽度为x米,则()A(502x)(30x)178×6B30×502×30x50x178×6C(302x)(50x)178D(502x)(30x)1782已知是关于的一元二次方程的两个根,且满足,则的值为( )A2BC1D3如图,某数学兴趣小组将长为,宽为的矩形铁丝框变形为以为圆心,为半径的扇形(忽略铁丝的粗细),则所得扇形的面积为( )ABCD4在一个不透明的盒子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.3,由此可估计盒中红球的个数约为()A3B6C7D145如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则OFA的度数是()A20°B25°C30°D35°6x1,x2是关于x的一元二次方程x2 mx m20的两个实数根,是否存在实数m使0成立?则正确的结论是( )Am0 时成立Bm2 时成立Cm0 或2时成立D不存在7如果两个相似多边形的面积比为4:9,那么它们的周长比为()A:B2:3C4:9D16:818如图,已知在中,于,则下列结论错误的是( )ABCD9一元二次方程mx2+mx0有两个相等实数根,则m的值为()A0B0或2C2D210关于反比例函数,下列说法正确的是( )A图象过(1,2)点B图象在第一、三象限C当x0时,y随x的增大而减小D当x0时,y随x的增大而增大二、填空题(每小题3分,共24分)11如图,点的坐标为,过点作轴的垂线交过原点与轴夹角为的直线于点,以原点为圆心,的长为半径画弧交轴正半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,以的长为半径画弧交轴正半轴于点按此做法进行下去,则点的坐标是_12足球从地面踢出后,在空中飞行时离地面的高度与运动时间的关系可近似地表示为,则该足球在空中飞行的时间为_13山西拉面,又叫甩面、扯面、抻面,是西北城乡独具地方风味的面食名吃,为山西四大面食之一将一定体积的面团做成拉面,面条的总长度与粗细(横截面面积)之间的变化关系如图所示(双曲线的一支)如果将这个面团做成粗为的拉面,则做出来的面条的长度为_14在一个不透明的塑料袋中装有红色白色球共个除颜色外其他都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在左右,则口袋中红色球可能有_个15一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是_16据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是_17在一个不透明的布袋中,有红球、白球共30个,除颜色外其它完全相同,小明通过多次摸球试验后发现,其中摸到红球的频率稳定在40%,则随机从口袋中摸出一个是红球的概率是_18自行车因其便捷环保深受人们喜爱,成为日常短途代步与健身运动首选.如图1是某品牌自行车的实物图,图2是它的简化示意图.经测量,车轮的直径为,中轴轴心到地面的距离为,后轮中心与中轴轴心连线与车架中立管所成夹角,后轮切地面于点.为了使得车座到地面的距离为,应当将车架中立管的长设置为_. (参考数据: 三、解答题(共66分)19(10分)某网点尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:销售量n(件)销售单价m(元/件)(1)请计算第几天该商品单价为25元/件?(2)求网店第几天销售额为792元?(3)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;这30天中第几天获得的利润最大?最大利润是多少?20(6分)如图,双曲线经过点P(2,1),且与直线ykx4(k0)有两个不同的交点.(1)求m的值.(2)求k的取值范围.21(6分)如图,已知线段,于点,且,是射线上一动点,分别是,的中点,过点,的圆与的另一交点(点在线段上),连结,.(1)当时,求的度数;(2)求证:;(3)在点的运动过程中,当时,取四边形一边的两端点和线段上一点,若以这三点为顶点的三角形是直角三角形,且为锐角顶点,求所有满足条件的的值.22(8分)已知关于x的一元二次方程mx22x10.(1)若方程有两个实数根,求m的取值范围;(2)若方程的两个实数根为x1,x2,且x1x2x1x2,求m的值23(8分)如图,方格纸中的每个小方格都是边长为个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点的坐标为.以点为位似中心,在轴的左侧将放大得到,使得的面积是面积的倍,在网格中画出图形,并直接写出点所对应的点的坐标.在网格中,画出绕原点顺时针旋转的.24(8分)已知:矩形中,点,分别在边,上,直线交矩形对角线于点,将沿直线翻折,点落在点处,且点在射线上.(1)如图1所示,当时,求的长;(2)如图2所示,当时,求的长;(3)请写出线段的长的取值范围,及当的长最大时的长.25(10分)如图,图中每个小方格都是边长为1个单位长度的正方形,在方格纸中的位置如图所示(1)请在图中建立平面直角坐标系,使得,两点的坐标分别为,并写出点的坐标;(2)在图中作出绕坐标原点旋转后的,并写出,的坐标26(10分)如图,已知在ABC中,AD是BAC平分线,点E在AC边上,且AED=ADB求证:(1)ABDADE; (2)AD2=AB·AE.参考答案一、选择题(每小题3分,共30分)1、A【分析】设道路的宽度为x米把道路进行平移,使六块草坪重新组合成一个矩形,根据矩形的面积公式即可列出方程【详解】解:设横、纵道路的宽为x米,把两条与AB平行的道路平移到左边,另一条与AD平行的道路平移到下边,则六块草坪重新组合成一个矩形,矩形的长、宽分别为(502x)米、(30x)米,所以列方程得(502x)×(30x)178×6,故选:A【点睛】本题考查了由实际问题抽象出一元二次方程,对图形进行适当的平移是解题的关键2、B【分析】根据根与系数的关系,即韦达定理可得,易求,从而可得,解可求,再利用根的判别式求出符合题意的.【详解】由题意可得,a=1,b=k,c=-1, 满足, 根据韦达定理 把式代入式,可得:k=-2故选B.【点睛】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合进行解题.3、B【分析】根据已知条件可得弧BD的弧长为6,然后利用扇形的面积公式:计算即可【详解】解:矩形的长为6,宽为3,AB=CD=6,AD=BC=3,弧BD的长=18-12=6,故选:B【点睛】此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式4、B【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,【详解】解:根据题意列出方程,解得:x=6,故选B.考点:利用频率估计概率5、B【解析】由旋转的性质和正方形的性质可得FOC40°,AOODOCOF,AOC90°,再根据等腰三角形的性质可求OFA的度数【详解】正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,FOC40°,AOODOCOF,AOC90°AOF130°,且AOOF,OFA25°故选B【点睛】本题考查了旋转的性质,正方形的性质,等腰三角形的性质,熟练运用旋转的性质解决问题是本题的关键6、A【解析】x1,x2是关于x的一元二次方程x2bxb20的两个实数根=(b-2)2+4>0x1+x2=b,x1×x2=b-2使0,则故满足条件的b 的值为0故选A.7、B【分析】根据面积比为相似比的平方即可求得结果.【详解】解:两个相似多边形的面积比为4:9,它们的周长比为:=.故选B.【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方.8、A【分析】根据三角形的面积公式判断A、D,根据射影定理判断B、C【详解】由三角形的面积公式可知,CDAB=ACBC,A错误,符合题意,D正确,不符合题意;RtABC中,ACB=90°,CDAB,AC2=ADAB,BC2=BDAB,B、C正确,不符合题意;故选:A【点睛】本题考查的是射影定理、三角形的面积计算,掌握射影定理、三角形的面积公式是解题的关键9、C【解析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值【详解】一元二次方程mx1+mx0有两个相等实数根,m14m×()m1+1m0,解得:m0或m1,经检验m0不合题意,则m1故选C【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根10、D【解析】试题分析:根据反比例函数y=(k0)的图象k0时位于第一、三象限,在每个象限内,y随x的增大而减小;k0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大可由k=-20,所以函数图象位于二四象限,在每一象限内y随x的增大而增大,图象是轴对称图象,故A、B、C错误故选D考点:反比例函数图象的性质二、填空题(每小题3分,共24分)11、【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点B2019的坐标【详解】过点A1作x轴的垂线交过原点与x轴夹角为的直线l于点B1,OA1=2,B1OA1=60,OB1A1=30OB1= OA1=4,B1A1=B1(2,)直线yx,以原O为圆心,OB1长为半径画弧x轴于点A2,则OA2OB1,OA24,点A2的坐标为(4,0),B2的坐标为(4,4),即(22,22×),OA3=点A3的坐标为(8,0),B3(8,8),以此类推便可得出点A2019的坐标为(22019,0),点B2019的坐标为;故答案为:【点睛】本题主要考查了点的坐标规律、一次函数图象上点的坐标特征、勾股定理等知识;由题意得出规律是解题的关键12、9.8【分析】求当t=0时函数值,即与x轴的两个交点,两个交点之间的距离即足球在空中飞行的时间.【详解】解:当t=0时, 解得: 足球在空中的飞行时间为9.8s故答案为:9.8【点睛】本题考查二次函数的实际应用,利用数形结合思想球解题,求抛物线与x轴的交点是本题的解题关键13、1【分析】因为面条的总长度y(cm)是面条粗细(横截面面积)x(cm2)反比例函数,且从图象上可看出过(0.05,3200),从而可确定函数式,再把x=0.16代入求出答案【详解】解:根据题意得:y= ,过(0.04,3200)k=xy=0.04×3200=128,y=(x0),当x=0.16时,y= =1(cm),故答案为:1【点睛】此题参考反比例函的应用,解题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式14、1【分析】设有红球有x个,利用频率约等于概率进行计算即可【详解】设红球有x个,根据题意得:20%,解得:x1,即红色球的个数为1个,故答案为:1【点睛】本题考查了由频率估计概率的知识,解题的关键是了解大量重复实验中事件发生的频率等于事件发生的概率15、1【解析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值【详解】解:根据题意得1%,解得n1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球故答案为1【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率16、2020【分析】根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案【详解】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿),2020年全年国内生产总值为:96.2598×(1+6.6%)102.6(万亿),国内生产总值首次突破100万亿的年份是2020年,故答案为:2020.【点睛】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键17、1【分析】根据题意得出摸出红球的频率,继而根据频数总数×频率计算即可【详解】小明通过多次摸球试验后发现其中摸到红球的频率稳定在40%,口袋中红色球的个数可能是30×40%1个故答案为:1【点睛】本题比较容易,考查利用频率估计概率大量反复试验下频率稳定值即概率用到的知识点为:概率=所求情况数与总情况数之比18、60【分析】先计算出AD=33cm,结合已知可知ACDF,由由题意可知BEED,即可得到BEAC,然后再求出BH的长,然后再运用锐角三角函数即可求解.【详解】解:车轮的直径为AD=33cmCF=33cmACDFEH=AD=33cmBEEDBEACBH=BE-EH=90-33=57cmsinACB=sin72°=0.95BC=57÷0.95=60cm故答案为60.【点睛】本题考查了解直角三角形的应用,将实际问题中抽象成数学问题是解答本题的关键.三、解答题(共66分)19、(1)第10天时该商品的销售单价为25元/件;(2)网店第26天销售额为792元;(3);这30天中第15天获得的利润最大,最大利润是元.【分析】(1)将m=25代入m=20+x,求得x即可;(2)令,解得方程即可;(3)根据“总利润=单件利润×销售量”可得函数解析式,将所得函数解析式配方成顶点式后,根据二次函数的性质即可得【详解】解:(1)当时,解得:,所以第10天时该商品的销售单价为25元/件;(2)根据题意,列方程为:,解得(舍去)答:网店第26天销售额为792元.(3);(4),当时,y最大=,答:这30天中第15天获得的利润最大,最大利润是元【点睛】本题考查二次函数的应用等知识,解题的关键是学会构建函数,利用二次函数的性质解决问题,属于中考常考题型20、 (1)m2;(2)k的取值范围是2k0.【解析】(1)将点P坐标代入,利用待定系数法求解即可;(2)由题意可得关于x的一元二次方程,根据有两个不同的交点,可得(4)24k(2)0,求解即可.【详解】(1)双曲线经过点P(2,1),m2×12;(2)双曲线与直线ykx4(k0)有两个不同的交点,整理得:kx24x20,(4)24k(2)0,k2,k的取值范围是2k0.【点睛】本题考查了反比例函数与一次函数综合,涉及了待定系数法、一元二次方程根的判别式等,熟练掌握相关知识是解题的关键.21、(1)75°;(2)证明见解析;(3)或或【分析】(1)根据三角形ABP是等腰三角形,可得B的度数;(2)连接MD,根据MD为PAB的中位线,可得MDB=APB,再根据BAP=ACB,BAP=B,即可得到ACB=B,进而得出ABCPBA,得出答案即可;(3)记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当ACQ=90°时,当QCD=90°时,当QDC=90°时,当AEQ=90°时,即可求得MQ的值【详解】解:(1)MNAB,AM=BM,PA=PB,PAB=B,APB=30°,B=75°,(2)如图1,连接MD,MD为PAB的中位线,MDAP,MDB=APB,BAC=MDC=APB,又BAP=180°-APB-B,ACB=180°-BAC-B,BAP=ACB,BAP=B,ACB=B,AC=AB,由(1)可知PA=PB,ABCPBA, ,AB2=BCPB;(3)如图2,记MP与圆的另一个交点为R,MD是RtMBP的中线,DM=DP,DPM=DMP=RCD,RC=RP,ACR=AMR=90°,AM2+MR2=AR2=AC2+CR2,12+MR2=22+PR2,12+(4-PR)2=22+PR2,PR=,MR=,(一)当ACQ=90°时,AQ为圆的直径,Q与R重合,MQ=MR=;(二)如图3,当QCD=90°时,在RtQCP中,PQ=2PR=,MQ=;(三)如图4,当QDC=90°时,BM=1,MP=4,BP=,DP=BP=,cosMPB= ,PQ=,MQ=;(四)如图5,当AEQ=90°时,由对称性可得AEQ=BDQ=90°,MQ=;综上所述,MQ的值为或或【点睛】此题主要考查了圆的综合题、等腰三角形的性质、三角形中位线定理,勾股定理,圆周角定理的综合应用,解决问题的关键是作辅助线构造直角三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用22、 (1)m1且m0(2) m2 【分析】(1)根据一元二次方程的定义和判别式得到m0且(2)24m0,然后求解不等式即可;(2)先根据根与系数的关系得到x1x2,x1x2,再将已知条件变形得x1x2(x1x2),然后整体代入求解即可.【详解】(1)根据题意,得m0且(2)24m0,解得m1且m0.(2)根据题意,得x1x2,x1x2,x1x2x1x2,即x1x2(x1x2),解得m2.【点睛】本题考查一元二次方程ax2+bx+c=0(a0)根的判别式和根与系数的关系(韦达定理),根的判别式:(1)当=b24ac0时,方程有两个不相等的实数根;(2)当=b24ac=0时,方程有有两个相等的实数根;(3)当=b24ac0时,方程没有实数根.韦达定理:若一元二次方程ax2+bx+c=0(a0)有两个实数根x1,x2,那么x1+x2=,x1x2=.23、(1)见解析,点的坐标为,点的坐标为;(2)见解析.【分析】(1)根据位似图形的性质:位似图形面积的比等于相似比的平方,即可得出相似比,画出图形;根据格点即可写出坐标;(2)根据图形的旋转的性质:图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变,画出图形即可.【详解】如图所示:点的坐标为,点的坐标为如图所示.【点睛】此题主要考查位似图形以及图形旋转的性质,熟练掌握,即可解题.24、(1);(2);(3)【分析】(1)根据翻折性质可得,得,.结合矩形性质得证,根据平行线性质得.设.得,由可求出x;(2)结合(1)方法可得,再根据勾股定理求PC,再求,中,;(3)作图分析:当P与C重合时,PC最小,是0;当N与C重合时,PC最大=.【详解】解:(1)沿直线翻折,点落在点处,.,.四边形是矩形,.,.四边形是矩形,.设.四边形是矩形,.,.解得,即.(2)沿直线翻折,点落在点处,.,.,.,.,.在中,.(3)如图当P与C重合时,PC最小,是0;如图当N与C重合时,PC最大=5;所以,此时PB=2,设PM=x,则BM=4-x由PB2+BM2=PM2可得22+(4-x)2=x2解得x= , BM=4-x=所以MN= 综合上述:,当最大时.【点睛】考核知识点:矩形性质,直角三角形性质,三角函数.构造直角三角形并解直角三角形是关键.25、(1)图形见解析,点坐标;(2)作图见解析,的坐标分别是 【分析】(1)根据已知点的坐标,画出坐标系,由坐标系确定C点坐标; (2)由关于原点中心对称性画,可确定写出,的坐标【详解】解:(1),把向左平移两个单位长度,再向上平移一个单位长度,得到原点O,建立如下图的直角坐标系, C(3,-3); (2)分别找到的对称点,顺次连接, 即为所求,如图所示,(-2,1),(-1,4),(-3,3)【点睛】本题考查了作图-旋转变换,熟练掌握网格结构,准确找出对应点的位置是解题的关键26、 (1)、证明过程见解析;(2)、证明过程见解析【分析】试题分析:(1)、根据角平分线得出BAD=DAE,结合AED=ADB得出相似;(2)、根据相似得出答案.【详解】试题解析:(1)、AD是BAC平分线 BAD=DAE 又AED=ADB ABDADE(2)、ABDADE ,AD2=AB·AE.考点:相似三角形的判定与性质