欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    信号与系统第5章.ppt

    • 资源ID:93475630       资源大小:1.02MB        全文页数:48页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    信号与系统第5章.ppt

    信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-1页第五章第五章 信号与系统信号与系统信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-2页第五章第五章 连续系统的连续系统的s s域分析域分析5.15.1 拉普拉斯变换拉普拉斯变换一、从傅里叶变换到拉普拉斯变换一、从傅里叶变换到拉普拉斯变换二、收敛域二、收敛域三、三、(单边单边)拉普拉斯变换拉普拉斯变换5.25.2 拉普拉斯变换的性质拉普拉斯变换的性质5.35.3 拉普拉斯变换逆变换拉普拉斯变换逆变换5.4 5.4 复频域分析复频域分析一、微分方程的变换解一、微分方程的变换解二、系统函数二、系统函数三、系统的三、系统的s域域框图框图四、电路的四、电路的s域域模型模型点击目录点击目录 ,进入相关章节,进入相关章节信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-3页第五章第五章 连续系统的连续系统的s s域分析域分析 频域分析频域分析以以虚指数信号虚指数信号ejt为基本信号,任意信号可为基本信号,任意信号可分解为众多不同频率的虚指数分量之和。使响应的求解分解为众多不同频率的虚指数分量之和。使响应的求解得到简化。物理意义清楚。但也有不足:得到简化。物理意义清楚。但也有不足:(1)有些重要信号不存在傅里叶变换,如)有些重要信号不存在傅里叶变换,如e2t(t);(2)对于给定初始状态的系统难于利用频域分析。对于给定初始状态的系统难于利用频域分析。在这一章将通过把频域中的傅里叶变换推广到复频在这一章将通过把频域中的傅里叶变换推广到复频域来解决这些问题。域来解决这些问题。本章引入本章引入复频率复频率 s=+j,以复指数函数以复指数函数est为为基本信基本信号,任意信号可分解为不同复频率的复指数分量之和。号,任意信号可分解为不同复频率的复指数分量之和。这里用于系统分析的独立变量是这里用于系统分析的独立变量是复频率复频率 s,故,故称为称为s域分域分析析。所采用的数学工具为拉普拉斯变换。所采用的数学工具为拉普拉斯变换。信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-4页5.15.1 拉普拉斯变换拉普拉斯变换一、从傅里叶到拉普拉斯变换一、从傅里叶到拉普拉斯变换有些函数不满足绝对可积条件,求解傅里叶变换困难。有些函数不满足绝对可积条件,求解傅里叶变换困难。为此,可用一衰减因子为此,可用一衰减因子e-t(为实常数)乘信号为实常数)乘信号f(t),适当选取适当选取 的值,使乘积信号的值,使乘积信号f(t)e-t当当t时信号幅时信号幅度趋近于度趋近于0,从而使,从而使f(t)e-t的傅里叶变换存在。的傅里叶变换存在。相应的傅里叶逆变换相应的傅里叶逆变换 为为f(t)e-t=F Fb b(+j+j)=)=f(t)e-t=令令s=+j,d =ds/j,有有信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-5页5.15.1 拉普拉斯变换拉普拉斯变换双边拉普拉斯变换对Fb(s)称为称为f(t)的双边拉氏变换(或象函数),的双边拉氏变换(或象函数),f(t)称为称为Fb(s)的双边拉氏逆变换(或原函数)。的双边拉氏逆变换(或原函数)。二、收敛域二、收敛域 只有选择适当的只有选择适当的 值才能使积分收敛,即信号值才能使积分收敛,即信号f(t)的双的双边拉普拉斯变换存在。边拉普拉斯变换存在。使使 f(t)拉氏变换存在拉氏变换存在 的取值范围称为的取值范围称为Fb(s)的的收敛域收敛域。下面举例说明下面举例说明Fb(s)收敛域的问题。收敛域的问题。信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-6页5.15.1 拉普拉斯变换拉普拉斯变换例例1 因果信号因果信号f1(t)=e t (t),求其拉普拉斯变换。求其拉普拉斯变换。解解 可见,对于因果信号,仅当可见,对于因果信号,仅当Res=时,其拉氏变换存时,其拉氏变换存在。在。收敛域如图所示。收敛域如图所示。收敛域收敛域收敛边界收敛边界信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-7页5.15.1 拉普拉斯变换拉普拉斯变换例例2 反因果信号反因果信号f2(t)=e t(-t),求其拉普拉斯变换。求其拉普拉斯变换。解解 可见,对于反因果信号,仅当可见,对于反因果信号,仅当Res=时,其收敛域时,其收敛域为为 Res 的一个带的一个带状区域,如图所示。状区域,如图所示。j0信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-9页5.15.1 拉普拉斯变换拉普拉斯变换通常遇到的信号都有初始时刻,不妨设其初始时刻为通常遇到的信号都有初始时刻,不妨设其初始时刻为坐标原点。这样,坐标原点。这样,t ,可以省略。本课程主要讨论单边拉氏变换。可以省略。本课程主要讨论单边拉氏变换。三、单边拉氏变换三、单边拉氏变换 简记为简记为F(s)=f(t)f(t)=-1F(s)或或 f(t)F(s)信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-10页5.15.1 拉普拉斯变换拉普拉斯变换四、常见函数的拉普拉斯变换四、常见函数的拉普拉斯变换 1、(t)1,-2、(t)或或1 1/s,03、指数函数、指数函数e-s0t -Res0cos 0t=(ej 0t+e e-j-j 0t)/2 sin 0t=(ej 0t e e-j-j 0t)/2j (t)s,-信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-11页5.25.2 拉普拉斯变换性质拉普拉斯变换性质5.25.2 拉普拉斯变换性质拉普拉斯变换性质一、线性性质一、线性性质若若f1(t)F1(s)Res 1,f2(t)F2(s)Res 2则则 a1f1(t)+a2f2(t)a1F1(s)+a2F2(s)Resmax(1,2)例例f(t)=(t)+(t)1+1/s,0 二、尺度变换二、尺度变换若若f(t)F(s),Res 0,且有实数且有实数a0,则则f(at)Resa 0 信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-12页5.25.2 拉普拉斯变换性质拉普拉斯变换性质例:如图信号例:如图信号f(t)的拉氏变换的拉氏变换F(s)=求图中信号求图中信号y(t)的拉氏变换的拉氏变换Y(s)。解:解:y(t)=4f(0.5t)Y(s)=42 F(2s)信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-13页5.25.2 拉普拉斯变换性质拉普拉斯变换性质三、时移(延时)特性三、时移(延时)特性 若若f(t)F(s),Res 0,且有实常数且有实常数t00,则则f(t-t0)(t-t0)e-st0F(s),Res 0 与尺度变换相结合与尺度变换相结合f(at-t0)(at-t0)例例1:求如图信号的单边拉氏变换。求如图信号的单边拉氏变换。解:解:f1(t)=(t)(t-1),f2(t)=(t+1)(t-1)F1(s)=F2(s)=F1(s)信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-14页5.25.2 拉普拉斯变换性质拉普拉斯变换性质“周期信号周期信号”fT(t)特例特例:T(t)1/(1 e-sT)fT(t)=f(t)+f(t-T)+f(t-2T)+f(t-3T)+若若f(t)F(s),则则:信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-15页5.25.2 拉普拉斯变换性质拉普拉斯变换性质例例2:已知已知f1(t)F1(s),求求f2(t)F2(s)解:解:f2(t)=f1(0.5t)f1 0.5(t-2)f1(0.5t)2F1(2s)f1 0.5(t-2)2F1(2s)e-2sf2(t)2F1(2s)(1 e-2s)信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-16页5.25.2 拉普拉斯变换性质拉普拉斯变换性质四、复频移(四、复频移(s s域平移)特性域平移)特性 若若f(t)F(s),Res 0 ,且有复常数且有复常数sa=a+j a,则则f(t)esat F(s-sa),Res 0+a 例例1:已知因果信号已知因果信号f(t)的象函数的象函数F(s)=求求e-tf(3t-2)的象函数。的象函数。解:解:e-tf(3t-2)例例2:f(t)=cos(2t/4)F(s)=?解解cos(2t/4)=cos(2t)cos(/4)+sin(2t)sin(/4)信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-17页5.25.2 拉普拉斯变换性质拉普拉斯变换性质五、时域的微分特性(微分定理)五、时域的微分特性(微分定理)若若f(t)F(s),Res 0,则则f(t)sF(s)f(0-)f(t)s2F(s)sf(0-)f(0-)f(n)(t)snF(s)若若f(t)为因果信号,则为因果信号,则f(n)(t)snF(s)例例1:(n)(t)?例例2:例例3:信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-18页5.25.2 拉普拉斯变换性质拉普拉斯变换性质六、时域积分特性(积分定理)六、时域积分特性(积分定理)若若f(t)F(s),Res 0,则则 例例1:t2(t)?例:例:t(t)?信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-19页5.25.2 拉普拉斯变换性质拉普拉斯变换性质例例2:已知因果信号已知因果信号f(t)如图如图,求求F(s)解解:对:对f(t)求导得求导得f(t),如图如图由于由于f(t)为因果信号,故为因果信号,故f(0-)=0f(t)=(t)(t 2)(t 2)F1(s)结论:若结论:若f(t)为因果信号,已知为因果信号,已知f(n)(t)Fn(s)则则 f(t)Fn(s)/sn信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-20页5.25.2 拉普拉斯变换性质拉普拉斯变换性质七、卷积定理七、卷积定理 时域卷积定理时域卷积定理 若因果函数若因果函数 f1(t)F1(s),Res 1 ,f2(t)F2(s),Res 2 则则 f1(t)*f2(t)F1(s)F2(s)复频域(复频域(s域)卷积定理域)卷积定理 信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-21页5.25.2 拉普拉斯变换性质拉普拉斯变换性质八、八、s s域微分和积分域微分和积分 若若f(t)F(s),Res 0,则则 例例1:t2e-2t(t)?(t)1 e-2t(t)1/(s+2)t2e-2t(t)信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-22页5.25.2 拉普拉斯变换性质拉普拉斯变换性质例例2:信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-23页5.25.2 拉普拉斯变换性质拉普拉斯变换性质九、初值定理和终值定理九、初值定理和终值定理 初值定理和终值定理常用于由初值定理和终值定理常用于由F(s)直接求直接求f(0+)和和f(),而不必求出原函数而不必求出原函数f(t)初值定理初值定理设函数设函数f(t)不含不含(t)及其各阶导数(即及其各阶导数(即F(s)为真分式,若为真分式,若F(s)为假分式化为真分式),为假分式化为真分式),则则 终值定理终值定理 若若f(t)当当t 时时极限存在,并且极限存在,并且 f(t)F(s),Res 0,00,则则 信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-24页5.25.2 拉普拉斯变换性质拉普拉斯变换性质例例1:信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-25页5.5.3 3 拉普拉斯逆变换拉普拉斯逆变换5.35.3 拉普拉斯逆变换拉普拉斯逆变换直接利用定义式求反变换直接利用定义式求反变换-复变函数积分,比较困难。复变函数积分,比较困难。通常的方法通常的方法(1)查表)查表:直接利用拉普拉斯逆变换表直接利用拉普拉斯逆变换表 (2)利用性质)利用性质 (3)部分分式展开部分分式展开 -结合结合 若象函数若象函数F(s)是是s的有理分式,可写为的有理分式,可写为 若若mn(假分式)假分式),可用多项式除法将象函数可用多项式除法将象函数F(s)分分解为有理多项式解为有理多项式P(s)与有理真分式之和。与有理真分式之和。信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-26页5.5.3 3 拉普拉斯逆变换拉普拉斯逆变换由于由于L-11=(t),L-1sn=(n)(t),故多项式故多项式P(s)的拉普拉斯逆变换由冲激函数构成。的拉普拉斯逆变换由冲激函数构成。下面主要讨论有理真分式的情形。下面主要讨论有理真分式的情形。部分分式展开法部分分式展开法若若F(s)是是s的实系数有理真分式(的实系数有理真分式(mn),则可写为则可写为 式中式中A(s)称为称为F(s)的的特征多项式特征多项式,方程,方程A(s)=0称为称为特征方特征方程程,它的根称为,它的根称为特征根特征根,也称为,也称为F(s)的的固有频率固有频率(或自然(或自然频率)。频率)。n个特征根个特征根pi称为称为F(s)的的极点极点。信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-27页5.5.3 3 拉普拉斯逆变换拉普拉斯逆变换(1)F(s)为单极点(单根)为单极点(单根)信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-28页例例1:1:5.5.3 3 拉普拉斯逆变换拉普拉斯逆变换信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-29页5.5.3 3 拉普拉斯逆变换拉普拉斯逆变换信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-30页5.5.3 3 拉普拉斯逆变换拉普拉斯逆变换例例2:2:信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-31页5.5.3 3 拉普拉斯逆变换拉普拉斯逆变换信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-32页5.5.3 3 拉普拉斯逆变换拉普拉斯逆变换特例特例:若:若F(s)包含共轭复根时包含共轭复根时(p1,2=j)K2=K1*f(t)=2|K1|e-tcos(t+)(t)若写为若写为K1,2=A jBf(t)=2e-tAcos(t)Bsin(t)(t)信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-33页5.5.3 3 拉普拉斯逆变换拉普拉斯逆变换例例3 3信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-34页5.5.3 3 拉普拉斯逆变换拉普拉斯逆变换信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-35页5.5.3 3 拉普拉斯逆变换拉普拉斯逆变换(2)F(s)有重极点(重根)有重极点(重根)若若A(s)=0在在s=p1处有处有r重根,重根,K11=(s p1)rF(s)|s=p1,K12=(d/ds)(s p1)rF(s)|s=p1 信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-36页5.5.3 3 拉普拉斯逆变换拉普拉斯逆变换举例举例:信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-37页5.5.3 3 拉普拉斯逆变换拉普拉斯逆变换信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-38页5.4 5.4 复频域分析复频域分析 5.45.4 复频域复频域系统系统分析分析 一、微分方程的变换解一、微分方程的变换解 描述描述n阶系统的微分方程的一般形式为阶系统的微分方程的一般形式为 系统的初始状态为系统的初始状态为y(0-),y(1)(0-),,y(n-1)(0-)。思路思路:用:用拉普拉斯变换微分特性拉普拉斯变换微分特性若若f(t)在在t=0时接入系统,则时接入系统,则 f(j)(t)s j F(s)信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-39页5.4 5.4 复频域分析复频域分析例例1 描述某描述某LTI系统的微分方程为系统的微分方程为 y(t)+5y(t)+6y(t)=2f(t)+6 f(t)有初始状态有初始状态y(0-)=1,y(0-)=-1,激励激励f(t)=5cost(t),求系统的全响应,求系统的全响应y(t)解解:方程取拉氏变换,并整理得方程取拉氏变换,并整理得y(t),yzi(t),yzs(t)s域的代数方程Yzi(s)Yzs(s)信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-40页5.4 5.4 复频域分析复频域分析y(t)=2e2t (t)e3t (t)-4e2t (t)+yzi(t)yzs(t)已知已知y(0-)=1,y(0-)=-1Yzi(s)Yzs(s)信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-41页5.4 5.4 复频域分析复频域分析二、系统函数二、系统函数 系统函数系统函数H(s)定义为定义为 它只与系统的结构、元件参数有关,而与激励、初始它只与系统的结构、元件参数有关,而与激励、初始状态无关。状态无关。yzs(t)=h(t)*f(t)H(s)=L h(t)Yzs(s)=L h(t)F(s)信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-42页5.4 5.4 复频域分析复频域分析例例2 已知当输入已知当输入f(t)=e-t(t)时,某时,某LTI因果系统的零因果系统的零状态响应状态响应 yzs(t)=(3e-t -4e-2t +e-3t)(t)求该系统的冲激响应和描述该系统的微分方程。求该系统的冲激响应和描述该系统的微分方程。解解h(t)=(4e-2t-2e-3t)(t)微分方程为微分方程为 y(t)+5y(t)+6y(t)=2f(t)+8f(t)s2Yzs(s)+5sYzs(s)+6Yzs(s)=2sF(s)+8F(s)取逆变换取逆变换 yzs(t)+5yzs(t)+6yzs(t)=2f(t)+8f(t)信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-43页5.4 5.4 复频域分析复频域分析三、系统的三、系统的s域框图域框图 时域框图基本单元时域框图基本单元f(t)af(t)y(t)=a f(t)s域框图基本单元域框图基本单元s1F(s)Y(s)=s1F(s)aF(s)Y(s)=a F(s)f1(t)f2(t)y(t)=f1(t)+f2(t)+F1(s)Y(s)=F1(s)+F2(s)F2(s)+信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-44页5.4 5.4 复频域分析复频域分析X(s)s-1X(s)s-2X(s)例例3 如图框图,列出其微分方程如图框图,列出其微分方程解解 画出画出s域框图域框图,s-1s-1F(s)Y(s)设左边加法器输出为设左边加法器输出为X(s),如图如图X(s)=F(s)3s-1X(s)2s-2X(s)s域的代数方程Y(s)=X(s)+4s-2X(s)微分方程为微分方程为 y(t)+3y(t)+2y(t)=f(t)+4f(t)再求再求h(t)?信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-45页5.4 5.4 复频域分析复频域分析四、电路的四、电路的s域模型域模型 对时域电路取拉氏变换对时域电路取拉氏变换 1、电阻、电阻 u(t)=R i(t)2、电感、电感 U(s)=sLIL(s)LiL(0-)U(s)=R I(s)元件元件的的s域域模型模型信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-46页5.4 5.4 复频域分析复频域分析3、电容、电容 I(s)=sCUC(s)CuC(0-)4、KCL、KVL方程方程信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-47页5.4 5.4 复频域分析复频域分析例例4 如图所示电路,已知如图所示电路,已知uS(t)=(t)V,iS(t)=(t),起始状态起始状态uC(0-)=1V,iL(0-)=2A,求电压求电压u(t)。解解 画出电路的画出电路的s域模型域模型Us(s)=1/s,Is(s)=1u(t)=et(t)3tet(t)V 信号与系统信号与系统信号与系统信号与系统湖南人文科技学院通信与控制工程系第5-48页作业:书P263P271 5.1:(1)(2)(4)(6)5.6:5.8:(3)(5)(9)5.11

    注意事项

    本文(信号与系统第5章.ppt)为本站会员(s****8)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开