高中二年级物理第六章生活中的圆周运动讲义.pdf
4生活中的圆周运动 学习目标1.会分析火车转弯、汽车过拱桥等实际运动问题中向心力的来源,能解决生活中的圆周运动问题2 r 解航天器中的失重现象及原因.3.了解离心运动及物体做离心运动的条件,知道离心运动的应用及危害.梳理教材夯实基础一、火车转弯1.如果铁道弯道的内外轨一样高,火车转弯时,由外轨对轮缘的弹力提供向心力,由于质量太大,因此需要很大的向心力,靠这种方法得到向心力,不仅铁轨和车轮极易受损,还可能使火车侧翻.2.铁路弯道的特点(1)弯道处外轨略高于内轨.(2)火车转弯时铁轨对火车的支持力不是竖直向上的,而是斜向弯道的固处支持力与重力的合力指向圆心.(3)在修筑铁路时,要根据弯道的半径和规定的行驶速度,适当选择内外轨的高度差,使转弯时所需的向心力儿乎完全由重力G 和弹力FN的合力来提供.二、拱形桥汽车过拱形桥汽车过凹形桥受力分析向心力F=mgFN=uiyv2Fn=FNmg=m对桥的压力,V2FN=mg呷9,V-FN=mg-t-/ny汽车对桥的压力小王汽车的重汽车对桥的压力大壬汽车的重结论力,而且汽车速度越大,对桥的力,而且汽车速度越大,对桥的压力越小压力越大三、航天器中的失重现象1 .向心力分析:宇航员受到的地球引力与座舱对他的支持力的合力提供向心力,由牛顿第二/定律:所以 FN=NI区一 噪.2 .完全失重状态:当。=疽 时,座舱对宇航员的支持力入=0,宇航员处于完全失重状态.四、离心运动1 .定义:做圆周运动的物体沿切线飞出或做逐渐远离圆心的运动.2 .原因:向心力突然消失或合力不足以提供所需的向心力.3 .离心运动的应用和防止(1)应用:离心干燥器;洗衣机的脱水筒;离心制管技术;分离血浆和红细胞的离心机.(2)防止:转动的砂轮、飞轮的转速不能太高;在公路弯道,车辆不允许超过规定的速度.。即学即用1 .判断下列说法的正误.(1)铁路的弯道处,内轨高于外轨.(X )(2)汽车驶过拱形桥顶部时,对桥面的压力等于车重.(X )(3)汽车行驶至凹形桥底部时,对桥面的压力大于车重.(V )(4)绕地球做匀速圆周运动的航天器中的宇航员处于完全失重状态,故不再受重力.(X )(5)航天器中处于完全失重状态的物体所受合力为零.(X )(6)做离心运动的物体可以沿半径方向向外运动.(X )2 .如图1所示,汽车在通过水平弯道时,轮胎与地面间的摩擦力已达到最大值,若汽车转弯的速率增大到原来的小倍,为使汽车转弯时仍不打滑,其转弯半径应变为原来的.倍.图 1答 案 2解析 汽车所受的摩擦力提供向心力,则有F f=,6不变,v增大为、3v,则弯道半径要变为原来的2 倍.探究重点提升素养一、火车转弯问题1.弯道的特点铁路弯道处,外轨高于内轨,若火车按规定的速度如行驶,转弯所需的向心力完全由重力和y 2支持力的合力提供,即,gtand=俳,如图2 所示,则 如=倔 茄,其中R 为弯道半径,。为轨道平面与水平面间的夹角.图 22.速度与轨道压力的关系(1)当火车行驶速度。等于规定速度。时,所需向心力仅由重力和支持力的合力提供,此时内外轨道对火车无挤压作用.(2)当火车行驶速度噂内时,外轨道对轮缘有侧压力.(3)当 火 车 行 驶 速 度 时,内轨道对轮缘有侧压力.例铁路在弯道处的内外轨道高度是不同的,己知内外轨道平面与水平面的夹角为仇如图 3 所示,弯道处的圆弧半径为/?,若质量为,的火车转弯时速度等于病嬴7,贝 1()图 3A.内轨对内侧车轮轮缘有挤压B.外轨对外侧车轮轮缘有挤压C.这时铁轨对火车的支持力等于播D.这时铁轨对火车的支持力大于燃答 案 C解析 由牛顿第二定律/合=无,解得“合=?gtan。,此时火车仅受重力和铁路轨道的支持力作用,如图所示,FNCOS e m g,则 尺=篙 ,内、外轨道对火车均无侧压力,故 C 正确,A、B、D 错误.mg针 对 训 练(多选)公路急转弯处通常是交通事故多发地带.如图4所示,某公路急转弯处是一圆弧,当汽车行驶的速率为v o 时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处)A.路面外侧高、内侧低B.车速只要低于优,车辆便会向内侧滑动C.车速虽然高于的,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,。的值变小答 案 AC解析 当汽车行驶的速率为a,时,汽车恰好没有向公路内外两侧滑动的趋势,即不受静摩擦力,此时仅由其重力和路面对其支持力的合力提供向心力,所以路面外侧高、内侧低,选项A 正确;当车速低于S)时,需要的向心力小于重力和支持力的合力,汽车有向内侧运动的趋势,受到的静摩擦力向外侧,并不一定会向内侧滑动,选项B 错误;当车速高于。o 时,需要的向心力大于重力和支持力的合力,汽车有向外侧运动的趋势,静摩擦力向内侧,速度越大,静摩擦力越大,只有静摩擦力达到最大以后,车辆才会向外侧滑动,选项C 正确;由m g t a n。=d 可知,研)的值只与路面与水平面的夹角和弯道的半径有关,与路面的粗糙程度无关,选项D错误.二、汽车过桥问题与航天器中的失重现象1.拱形桥问题(1)汽车过拱形桥(如图5)球V汽车在最高点满足关系:m g 一入=宠,即 F N=m g 9当0=,法时,FN=0.当 口 寸,OvFNWmg.当。K项 时,汽车将脱离桥面做平抛运动,易发生危险.说明:汽车通过拱形桥的最高点时,向心加速度向下,汽车对桥的压力小于其自身的重力,而且车速越大,压力越小,此时汽车处于失重状态.(2)汽车过凹形桥(如图6)mg图 6汽车在最低点满足关系:八一,监=方,即/N =,咫+%-.说明:汽车通过凹形桥的最低点时,向心加速度向上,而且车速越大,压力越大,此时汽车处于超重状态.由于汽车对桥面的压力大于其自身重力,故凹形桥易被压垮,因而实际中拱形桥多于凹形桥.2.绕地球做圆周运动的卫星、飞船、空间站处于完全失重状态.(1)质量为M 的航天器在近地轨道运行时,航天器的重力提供向心力,满足关系:则 v=ygR.质量为m的航天员:设航天员受到的座舱的支持力为尸N,则,咫 一 人=贤.当还时,FN=O,即航天员处于完全失重状态.(3)航天器内的任何物体都处于完全失重状态.例(20 1 8 山西省实验中学高一下期中)如图7所示,地球可以看成一个巨大的拱形桥,桥面半径R=6 4 0 0 k m,地面上行驶的汽车中驾驶员的重力G=8 0 0 N,在汽车不离开地面的前提下,下列分析中正确的是()图 7A.汽车的速度越大,则汽车对地面的压力也越大B.不论汽车的行驶速度如何,驾驶员对座椅压力大小都等于8 0 0 NC.只要汽车行驶,驾驶员对座椅压力大小都小于他自身的重力D.如果某时刻速度增大到使汽车对地面压力为零,则此时驾驶员会有超重的感觉答 案 C解 析 汽车以及驾驶员的重力和地面对汽车的支持力的合力提供汽车做圆周运动所需向心力,则有m g 乐=疗 ,重力是一定的,。越大,则尸N 越小,故 A错误;因为只要汽车行驶,驾驶员的一部分重力则会用于提供驾驶员做圆周运动所需的向心力,结合牛顿第三定律可知驾驶员对座椅压力大小小于其自身的重力,故 B错误,C 正确;如果速度增大到使汽车对地面的压力为零,说明汽车和驾驶员的重力全部用于提供做圆周运动所需的向心力,处于完全失重状态,此时驾驶员会有失重的感觉,故 D错误.例O 如图8所示,质量机=2.0 X 1 0 4 k g的汽车以不变的速率先后驶过凹形桥面和凸形桥面,两桥面的圆弧半径均为6 0 m,如果桥面能承受的压力不超过3.0 X 1 0 5 N,则:(g取1 0 m H)0/r/y/4图8(1)汽车允许的最大速率是多少?(2)若以所求速率行驶,汽车对桥面的最小压力是多少?答 案(1)1 0/3 m/s (2)1.0 X 1 05N解 析(1)汽车在凹形桥的底部时,合力向上,汽车受到的支持力最大,由牛顿第三定律可知,桥面对汽车的支持力FN I=3.O X1 O5 N,根 据 牛 顿第二定律FN-fng=m f解 得v=骁 一 财=1即m/s由于o/5 m/s.汽车在凸形桥顶部时,合力向下,汽车受到的支持力最小,由牛顿第二定律得W g FN2=/,即 F N 2=w(g,)=l.O X i o5 N由牛顿第三定律得,在凸形桥顶部汽车对桥面的压力为1.0 X1()5N,此即最小压力.三、离心运动1.物体做离心运动的原因提供向心力的合力突然消失,或者合力不能提供足够的向心力.注意:物体做离心运动并不是物体受到“离心力”作用,而是由于合外力不能提供足够的向心力.所谓“离心力”实际上并不存在.2.合力与向心力的关系(如图9所示).图9(1)若尸金=加加?或 尸 合=猿,物体做匀速圆周运动,即“提供”满 足“需要”.若尸合加 心 或F合 年,物体做近心运动,即“提供过度”.若0的。2或。/件 十,则合力不足以将物体“拉回”到原轨道上,而做离心运动,即“提供不足”.(4)若F令=0,则物体沿切线方向做直线运动.例 关于离心运动,下列说法中正确的是()A.物体一直不受外力作用时,可能做离心运动B.在外界提供的向心力突然变大时,原来做匀速圆周运动的物体将做离心运动C.只要向心力的数值发生变化,原来做匀速圆周运动的物体就将做离心运动D.当外界提供的向心力突然消失或数值变小时,原来做匀速圆周运动的物体将做离心运动答 案D解析 离心运动是指原来在做匀速圆周运动的物体后来远离圆心,所以选项A错误:离心运动发生的条件是:实际的合力小于做圆周运动所需要的向心力,所以选项B、C错误,D正确.随堂演练逐点落实1.(火车转弯问题)(多选)全国铁路大面积提速,给人们的生活带来便利.火车转弯可以看成是在水平面内做匀速圆周运动,火车速度提高会使外轨受损.为解决火车高速转弯时外轨受损这一难题,以下措施可行的是()A.适当减小内外轨的高度差B.适当增加内外轨的高度差C.适当减小弯道半径D.适当增大弯道半径答 案BD解析 设铁路弯道处轨道平面的倾角为a时,轮缘与内外轨间均无挤压作用,根据牛顿第二定律有mgtan 解得o=Ngrtan a,所以为解决火车高速转弯时外轨受损这一难题,可行的措施是适当增大倾角a(即适当增加内外轨的高度差)和适当增大弯道半径r.2.(航天器中的失重现象)(多选)航天飞机在围绕地球做匀速圆周运动过程中,关于航天员,下列说法中正确的是()A.航天员受到的重力消失了B.航天员仍受重力作用,重力提供其做匀速圆周运动的向心力C.航天员处于超重状态D.航天员对座椅的压力为零答 案BD解 析 航天飞机在绕地球做匀速圆周运动时,依然受地球的吸引力,而且正是这个吸引力提供航天飞机绕地球做圆周运动的向心力,航天员的加速度与航天飞机的相同,是其重力提供向心力,选项A错误,B正确;此时航天员不受座椅弹力,即航天员对座椅的压力为零,处于完全失重状态,选项D正确,C错误.3.(离心现象)在冬奥会短道速滑项目中,运动员绕周长仅111米的短道竞赛.比赛过程中运动员在通过弯道时如果不能很好地控制速度,将发生侧滑而摔离正常比赛路线.如图1 0所示,圆弧虚线。6代表弯道,即正常运动路线,。为运动员在O点时的速度方向(研究时可将运动员看做质点).下列论述正确的是()图10A.发生侧滑是因为运动员受到的合力方向背离圆心B.发生侧滑是因为运动员受到的合力大于所需要的向心力C.若在O点发生侧滑,则滑动的方向在0 a左侧D.若在。点发生侧滑,则滑动的方向在。“右侧与。匕之间答 案D解析 发生侧滑是因为运动员的速度过大,所需要的向心力过大,而运动员受到的合力小于所需要的向心力,受到的合力方向指向圆弧内侧,故选项A、B错误;运动员在水平方向不受任何外力时沿0 a方向做离心运动,实际上运动员受到的合力方向指向圆弧。匕内侧,所以运动员滑动的方向在0 a右侧与O h之间,故选项C错误,D正确.4.(汽车转弯与过桥问题)(2019山西现代双语学校期中)在高级沥青铺设的高速公路上,汽车的设计时速是108 k m/h,汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的/取 1 0 r n/s2).(1)如果汽车在这种高速公路的弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?(2)如果高速公路上设计了圆弧拱形立交桥,要使汽车能够以设计时速安全通过圆弧拱桥,这个圆弧拱形立交桥的半径至少是多少?答 案(1)1 5 0 m (2)9 0 m解析设汽车的质量为m.(1)汽车在水平路面上拐弯,可视为汽车做勺速圆周运动,其向心力由车与路面间的静摩擦力3 公提供,当静摩擦力达到最大值时,由向心力公式可知这时的半径最小,有=由速度 v=1 0 8 k m/h =3 0 m/s 得弯道半径rm i n=1 5 0 m(2)汽车过圆弧拱桥,可看做在竖直平面内做匀速圆周运动,到达最高点时,根据向心力公式七 公、v2、为了保证安全通过,车与路面间的弹力FN必须大于等于零,即有m g 2加万,代入v=1 0 8 k m/h=3 0 m/s,得 R290m,故半径至少是9 0 m.课时对点练g基础对点练考 点 一 交通工具的转弯问题1.如图1 所示,质量相等的汽车甲和汽车乙,以相等的速率沿同一水平弯道做匀速圆周运动,汽车甲在汽车乙的外侧.两车沿半径方向受到的摩擦力分别为衣甲和4 4.以下说法正确的是()图 1A.尸 f 甲小于B乙B.F f 卬等于R乙C.R 甲大于吊乙D.6 平和6 乙的大小均与汽车速率无关答 案 A解析 汽车在水平面内做匀速圆周运动,摩擦力提供做匀速圆周运动的向心力,即F(=F由于,*v=,匕,v 2+G2=5 0 M N,C 正确.考 点 二 汽车过桥问题和航天器中的失重现象5.(2019长丰二中高一下学期期末)如图5 所示,当汽车通过拱桥顶点的速度为6 m/s时;车对桥顶的压力为车重的3本如果要使汽车在桥面行驶至桥顶时,对桥面的压力为零,则汽车通过桥顶的速度大小应为()尺L-cTmg图 5A.3 m/s B.10 m/sC.12 m/s D.24 m/s答 案 C解析 根据牛顿第二定律得:FN=/?A,即/吆=后 7,当汽车对桥面的压力为零时,桥V 4面对汽车的支持力为零,有:mg=/rr-f解得:vr=2 v=12 m/s,故 C 正确.6.(2019天津六校高一下期中)如 图 6 所示,汽车车厢顶部悬挂一个轻质弹簧,弹簧下端拴一个质量为i的小球.当汽车以某一速率在水平地面上匀速行驶时,弹簧长度为L”当汽车以大小相同的速度匀速通过一个桥面为圆弧形的凸形桥的最高点时,弹簧长度为乙2,下列选项中正确的是()a图6A.Li=L?B.LIL2C.LLI D.前三种情况均有可能答 案B7.下列四幅图中的行为可以在绕地球做匀速圆周运动的“天宫二号”舱内完成的有()A.用台秤称量重物的质量B.用水杯喝水C.用沉淀法将水与沙子分离D.给小球一个很小的初速度,小球能在拉力作用下在竖直面内做圆周运动答 案D解析 重物处于完全失重状态,对台秤的压力为零,无法通过台杆测量重物的质量,故A错误;水杯中的水处于完全失重状态,不会因重力而流入嘴中,故B错误;沙子处于完全失重状态,不能通过沉淀法与水分离,故C错误;小球处于完全失重状态,给小球一个很小的初速度,小球能在拉力作用下在竖直面内做圆周运动,故D正确.考点三离心现象8.(多选)如图7所示,在匀速转动的洗衣机脱水筒内壁上,有一件湿衣服随圆筒一起转动而未滑动,贝 立 )图7A.衣服随脱水筒做圆周运动的向心力由衣服的重力提供B.水会从脱水筒甩出是因为水滴受到的向心力很大C.加快脱水筒转动角速度,衣服对筒壁的压力增大D.加快脱水筒转动角速度,脱水效果会更好答 案 CD解 析 衣服受到竖直向下的重力、竖直向上的静摩擦力、指向圆心的支持力,重力和静摩擦力是一对平衡力,大小相等,故向心力是由支持力提供的,A 错误;脱水筒转动角速度增大以后,支持力增大,故衣服对筒壁的压力也增大,C 正确;对于水而言,衣服对水滴的附着力提供其做圆周运动的向心力,说水滴受向心力本身就不正确,B 错误;随着脱水筒转动角速度的增加,需要的向心力增加,当时着力不足以提供需要的向心力时,衣服上的水滴将做离心运动,故脱水筒转动角速度越大,脱水效果会越好,D 正确.9.如图8 所示的陀螺,是很多人小时候喜欢玩的玩具.从上往下看(俯视),若陀螺立在某一点顺时针匀速转动,此时滴一滴墨水到陀螺,则被甩出的墨水径迹可能是下列的()答 案 D10.如图9 所示,赛车在水平路面上转弯时,常常在弯道上冲出跑道,则以下说法正确的是()A.是由于赛车行驶到弯道时,B.是由于赛车行驶到弯道时,C.是由于赛车行驶到弯道时,图 9运动员未能及时转动方向盘才造成赛车冲出跑道的运动员没有及时减速才造成赛车冲出跑道的运动员没有及时加速才造成赛车冲出跑道的D.由公式尸=用 2r可知,弯道半径越大,越容易冲出跑道答 案 B力 能力综合练11.(多选)一个质量为m的物体(体积可忽略),在半径为R的光滑半球顶点处以水平速度。运动,如 图10所示,重力加速度为g,则下列说法正确的是()图10A.若。()=病,则物体对半球顶点无压力B.若加=卬屣,则物体对半球顶点的压力为最C.若如=0,则物体对半球顶点的压力为相gD.若 如=0,则物体对半球顶点的压力为零答 案AC2解析 设物体在半球顶点受到的支持力为FN,若 加=/瓦 由?g吊4=玲,得FN=0,则根据牛顿第三定律,物体对半球顶点无压力,A正确:若VQ=%,由/ngFN=带,得FN=m g,则根据牛顿第三定律,物 体 对 半 球 顶 点 的 压 力 为 去B错误;若o()=0,物体处于平衡状态,对半球顶点的压力为,咫,C正确,D错误.12.(2019泉州五中期中)如 图11所示,在粗糙水平木板上放一个物块,使水平木板和物块一起在竖直平面内沿逆时针方向做匀速圆周运动,曲 为水平直径,cd为竖直直径,在运动过程中木板始终保持水平,物块相对木板始终静止,则()图11A.物块始终受到三个力作用B.只有在小 氏c、d四点,物块受到的合外力才指向圆心C.从“到b,物块所受的摩擦力先增大后减小D.从 人到“,物块处于超重状态答 案D解析 在 以“两点处,物块只受重力和支持力,在其他位置处物块受到重力、支持力、静摩擦力三个作用力,故A错误;物块做匀速圆周运动,合外力提供向心力,所以合外力始终指向圆心,故B错误;从a运动到b,物块的加速度的方向始终指向圆心,水平方向的加速度先减小后反向增大,根据牛顿第二定律知,物块所受木板的摩擦力先减小后增大,故C错误;从匕运动到4,向心加速度有向上的分量,则物块处于超重状态,故 D正确.1 3.如图1 2 所示为汽车在水平路面做半径为R的大转弯的后视图,悬吊在车顶的灯左偏了 Q角,则:(重力加速度为g)脚一1觑“图 1 2(1)车正向左转弯还是向右转弯?车速是多少?(3)若(2)中求出的速度正是汽车转弯时不打滑允许的最大速度,则车轮与路面间的动摩擦因数是多少?(最大静摩擦力等于滑动摩擦力)答 案(1)向 右 转 弯(2)y/gRtan 9(3)t an 0解 析(1)对灯受力分析可知,合外力方向向右,所以车正向右转弯;(2)设灯的质量为机,对灯受力分析知V2,-m g t an Onr,得 v=gRtan 6(3)设汽车的质量为M,汽车刚好不打滑,有*W g=M 3得=t an 6.g拓展提升练1 4.一辆汽车匀速率通过一座圆弧形拱桥后,接着又以相同速率通过一圆弧形凹形桥,如 图 1 3,设两圆弧半径相等,汽车通过拱桥桥顶时,对桥面的压力大小Q 为车重的一半,汽车通过圆弧形凹形桥的最低点时,对桥面的压力大小为B,求 Q 与 B 之比.图 1 3答 案 I:3解 析 汽车过圆弧形桥的最高点(或最低点)时,重力与桥面对汽车的支持力的合力提供向心力.由牛顿第三定律可知,汽车受桥面对它的支持力与它对桥面的压力大小相等,汽车过圆弧形拱桥的最高点时,由牛顿第二定律可得:v2G F=nr,同理,汽车过圆弧形凹形桥的最低点时,有:V2尸 2 -G =N,由题意可知:FI=1G3由以上各式可解得:F2=1G,所 以F:尸2=1 :3.