2021年高中数学说课稿汇总8篇.pdf
2 0 2 1 年高中数学说课稿汇总8 篇高 中 数 学 说 课 稿 篇1高三第一阶段复习,也 称“知识篇”。在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第一轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯通。对于普通高中的学生,第一轮复习更为重要,我们希望能做高考试题中一些基础题目,必须侧重基础,加强复习的针对性,讲求实效。一、内容分析说明1、本小节内容是初中学习的多项式乘法的继续,它所研究的二项式的乘方的展开式,与数学的其他部分有密切的联系:(1)二项展开式与多项式乘法有联系,本小节复习可对多项式的变形起到复习深化作用。(2)二项式定理与概率理论中的二项分布有内在联系,利用二项式定理可得到一些组合数的恒等式,因此,本小节复习可加深知识间纵横联系,形成知识络。(3)二项式定理是解决某些整除性、近似计算等问题的一种方法。2、高考中二项式定理的试题几乎年年有,多数试题的难度与课本习题相当,是容易题和中等难度的试题,考察的题型稳定,通常以选择题或填空题出现,有时也与应用题结合在一起求某些数、式的近似值。二、学校情况与学生分析(1)我校是一所镇普通高中,学生的基础不好,记忆力较差,反应速度慢,普遍感到数学难学。但大部分学生想考大学,主观上有学好数学的愿望。(2)授课班是政治、地理班,学生听课积极性不高,听课率 低(6 0%),注意力不能持久,不能连续从事某项数学活动。课堂上喜欢轻松诙谐的气氛,大部分能机械的模仿,部分学生好记笔记。三、教学目标复习课二项式定理计划安排两个课时,本课是第一课时,主要复习二项展开式和通项。根据历年高考对这部分的考查情况,结合学生的特点,设定如下教学目标:1、知识目标:(1)理解并掌握二项式定理,从项数、指数、系数、通项几个特征熟记它的展开式。(2)会运用展开式的通项公式求展开式的特定项。2、能力目标:(1)教给学生怎样记忆数学公式,如何提高记忆的持久性和准确性,从而优化记忆品质。记忆力是一般数学能力,是其它能力的基础。(2)树立由一般到特殊的解决问题的意识,了解解决问题时运用的数学思想方法。3、情感目标:通过对二项式定理的复习,使学生感觉到能掌握数学的部分内容,树立学好数学的信心。有意识地让学生演练一些历年高考试题,使学生体验到成功,在明年的高考中,他们也能得分。四、教学过程1 知识归纳(1)创设情景:同学们,还记得吗?、展开式是什么?学生一起回忆、老师板书。设计意图:提出比较容易的问题,吸引学生的注意力,组织教学。为学生能回忆起二项式定理作铺垫:激活记忆,引起联想。(2)二项式定理:设问展开式是什么?待学生思考后,老师板书=C a n+C a n -l b l+C a n -rb r+C b n (n N _)老师要求学生说出二项展开式的特征并熟记公式:共有项;各项里a的指数从n起依次减小1,直到0为止;b的指数从0起依次增加1,直到n为止。每一项里a、b的指数和均为no巩固练习填空设计意图:教给学生记忆的方法,比较分析公式的特点,记规律。变用公式,熟悉公式。(3)展开式中各项的系数C ,C ,C ,,称为二项式系数.展开式的通项公式T r+l=C a n r b r ,其中r=0,1,2,n表示展开式中第r+1项.2、例题讲解例1求的展开式的第4项的二项式系数,并求的第4项的系数。讲解过程设问:这 里,要求的第4项的有关系数,如何解决?学生思考计算,回答问题;老师指明当项数是4时,此 时,所以第4项的二项式系 数 是,第4项的系数与的第4项的二项式系数区别。板书解:展开式的第4项所以第4项的系数为,二项式系 数 为。选题意图:利用通项公式求项的系数和二项式系数;复习指数幕运算。例2求的展开式中不含的项。讲解过程设问:不含的项是什么样的项?即这一项具有什么性质?问题转化为第几项是常数项,谁能看出哪一项是常数项?师 生 讨 论“看不出哪一项是常数项,怎么办?”共同探讨思路:利用通项公式,列出项数的方程,求出项数。老师总结思路:先设第 项为不含 的项,得,利用这一项的指数是零,得到关于的方程,解 出 后,代回通项公式,便可得到常数项。板书解:设展开式的第项为不含项,那么令,解 得,所以展开式的第9项是不含的项。因 此。选题意图:巩固运用展开式的通项公式求展开式的特定项,形成基本技能。判断第几项是常数项运用方程的思想;找到这一项的项数后,实现了转化,体现转化的数学思想。例3求 的展开式中,的系数。解题思路:原式局部展开后,利用加法原理,可得到展开式中的系数。板书解:由 于,则的展开式中的系数为的展开式中的系数之和。而的展开式含的项分别是第5 项、第 4 项和第3 项,则的展开式中的系数分别是:。所以的展开式中的系数为例 4如果在(+)n的展开式中,前三项系数成等差数列,求展开式中的有理项.解:展开式中前三项的系数分别为1,,由题意得2 X =1+,得 n=8.设第r+1 项为有理项,T=C x ,则 r 是 4的倍数,所以 r=0,4,8.有理项为 T l=x 4,T 5=x,T 9=.3、课堂练习1.(2 0 _ 年江苏,7)(2 x+)4的展开式中x 3 的系数是A.6 B.1 2 C.2 4 D.4 8解析:(2 x+)4=x 2 (1+2 )4,在(1+2 )4 中,x 的系数为 C -2 2=2 4.答案:C2.(2 0 _ 年全国I ,5)(2 x 3-)7的展开式中常数项是A.1 4 B.1 4 C.42 D.-4 2解析:设(2 x 3 一 )7 的展开式中的第r+1 项是T=C (2 x 3)()r=C 2 ,(1)r x ,当 一+3 (7-r)=0,即r=6 时,它为常数项,C (-1)6 2 1=1 4.答案:A3.(2 0 _ 年湖北,文 1 4)已 知(x +x )n的展开式中各项系数的和是1 2 8,则展开式中x 5 的系数是.(以数字作答)解析:(x +x )n的展开式中各项系数和为1 2 8,令 x=l,即得所有项系数和为2 n=1 2 8.,n=7.设该二项展开式中的r+1 项为T =C (x )(x )r=C ,x ,令=5即r=3时,x 5项的系数为C =3 5.答案:3 5五、课堂教学设计说明1、这是一堂复习课,通过对例题的研究、讨论,巩固二项式定理通项公式,加深对项的系数、项的二项式系数等有关概念的理解和认识,形成求二项式展开式某些指定项的基本技能,同时,要培养学生的运算能力,逻辑思维能力,强化方程的思想和转化的思想。2、在例题的选配上,我设计了一定梯度。第一层次是给出二项式,求指定的项,即项数已知,只需直接代入通项公式即可(例1);第 二 层 次(例2)则需要自己创造代入的条件,先判断哪一项为所求,即先求项数,利用通项公式中指数的关系求出,此后转化为第一层次的问题。第三层次突出数学思想的渗透,例3需要变形才能求某一项的系数,恒等变形是实现转化的手段。在求每个局部展开式的某项系数时,又有分类讨论思想的指导。而 例4的设计是想增加题目的综合性,求的n过程中,运用等差数列、组合数n等知识,求出后,有化归为前面的问题。六、个人见解高 中 数 学 说 课 稿 篇2各位评委老师好:今天我说课的题目是是必修章第节的内容,我将以新课程标准的理念指导本节课的教学,从教材分析,教法学法,教学过程,教学评价四个方面加以说明。一、教材分析是在学习了基础上进一步研究并为后面学习做准备,在整个高中数学中起着承上启下的作用,因此本节内容十分重要。根据新课标要求和学生实际水平我制定以下教学目标1、知识能力目标:使学生理解掌握2、过程方法目标:通过观察归纳抽象概括使学生构建领悟数学思想,培养能力3、情感态度价值观目标:通过学习体验数学的科学价值和应用价值,培养善于观察勇于思考的学习习惯和严谨的科学态度根据教学目标、本节特点和学生实际情况本节重点是,由于学 生 对 缺少感性认识,所以本节课的重点是二、教法学法根据教师主导地位和学生主体地位相统一的规律,我采用引导发现法为本节课的主要教学方法并借助多媒体为辅助手段。在教师点拨下,学生自主探索、合作交流来寻求解决问题的方法。三、教学过程四、教学程序及设想1、由.引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。对于本题:2、由实例得出本课新的知识点是:3、讲解例题。我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:4、能力训练。课后练习.使学生能巩固羡慕自觉运用所学知识与解题思想方法。5、总结结论,强化认识。知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。6、变式延伸,进行重构。重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。五、教学评价学生学习的学习结果评价当然重要,但是更重要的是学生学习的过程评价,教师应当高度重视学生学习过程中的参与度、自信心、团队精神合作意识数学能力的发现,以及学习的兴趣和成就感。高中数学说课稿篇3一、教学背景分析1、教材结构分析 圆的方程安排在高中数学第二册(上)第七章第六节。圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。2、学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3、教学目标(1)知识目标:掌握圆的标准方程;会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;利用圆的标准方程解决简单的实际问题。(2)能力目标:进一步培养学生用代数方法研究几何问题的能力;加深对数形结合思想的理解和加强对待定系数法的运用;增强学生用数学的意识。(3)情感目标:培养学生主动探究知识、合作交流的意识;在体验数学美的过程中激发学生的学习兴趣。根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4、教学重点与难点(1)重点:圆的标准方程的求法及其应用。(2)难点:会根据不同的已知条件求圆的标准方程;选择恰当的坐标系解决与圆有关的实际问题。为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:二、教法学法分析1、教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。2、学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。通过应用圆的标准方程,熟悉用待定系数法求的过程。下面我就对具体的教学过程和设计加以说明:三、教学过程与设计整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申下面我从纵横两方面叙述我的教学程序与设计意图。首先:纵向叙述教学过程(一)创设情境一一启迪思维问题一已知隧道的截面是半径为4 m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7 m,高为3 m的货车能不能驶入这个隧道?通过对这个实际问题的探究,把学生的思维由用勾股定理求线段C D的长度转移为用曲线的方程来解决。一方面帮助学生回顾了旧知一一求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。用实际问题创设问题情境,让学生感受到问题 于实际,应用于实际,激发了学生的学习兴趣和学习欲望。这样获取的知识,不但易于保持,而且易于迁移。通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节。(二)深入探究一一获得新知问 题 二1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?2、如果圆心在,半径为时又如何呢?这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r 的圆的标准方程。然后再让学生对圆心不在原点的情况进行探究。我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节。(三)应用举例一一巩固提高I、直接应用内化新知问题三1、写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点,圆心在点。2、写出圆的圆心坐标和半径。我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。II、灵活应用 提升能力问题四1、求以点为圆心,并且和直线相切的圆的方程。2、求过点,圆心在直线上且与轴相切的圆的方程。3、已知圆的方程为,求过圆上一点的切线方程。你能归纳出具有一般性的结论吗?已知圆的方程是,经过圆上一点的切线的方程是什么?我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。H I、实际应用回归自然问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高0P=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)o我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。(四)反馈训练一形成方法问题六1、求过原点和点,且圆心在直线上的圆的标准方程。2、求圆过点的切线方程。3、求圆过点的切线方程。接下来是第四环节一一反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3 题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。(五)小结反思一一拓展引申1、课堂小结把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法圆心为,半径为r 的圆的标准方程为:圆心在原点时,半径为r 的圆的标准方程为:。已知圆的方程是,经过圆上一点的切线的方程是:。2、分层作业(A)巩固型作业:教材P 8 1-8 2:(习题7。6)1,2,4。(B)思维拓展型作业:试推导过圆上一点的切线方程。3、激发新疑问 题 七1、把圆的标准方程展开后是什么形式?2、方程表示什么图形?在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了。在知识的拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:横向阐述教学设计(一)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题一一问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。(二)学生主体 教师主导 探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。(三)培养思维提升能力激励创新为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争”使教育过程成为一种艺术的事业”。高中数学说课稿篇4各位老师:大家好!我叫_ x,来 自 我 说 课 的 题 目 是 用样本的数字特征估计总体的数字特征,内容选自于高中教材新课程人教A版必修3第二章第二节,课时安排为三个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析四大方面来阐述我对这节课的分析和设计:一、教材分析1、教材所处的地位和作用在上一节我们已经学习了用图、表来组织样本数据,并且学习了如何通过图、表所提供的信息,用样本的频率分布估计总体的分布情况。本节课是在前面所学内容的基础上,进一步学习如何通过样本的情况来估计总体,从而使我们能从整体上更好地把握总体的规律,为现实问题的解决提供更多的帮助。2 教学的重点和难点重点:能利用频率颁布直方图估计总体的众数,中位数,平均数。体会样本数字特征具有随机性难点:能应用相关知识解决简单的实际问题。二、教学目标分析1、知识与技能目标(1)能利用频率颁布直方图估计总体的众数,中位数,平均数。(2)能用样本的众数,中位数,平均数估计总体的众数,中位数,平均数,并结合实际,对问题作出合理判断,制定解决问题的有效方法。2、过程与方法目标:通过对本节课知识的学习,初步体会、领悟用数据说话的统计思想方法。3、情感态度与价值观目标:通过对有关数据的搜集、整理、分析、判断培养学生实事求是的科学态度和严谨的工作作风。三、教学方法与手段分析1、教学方法:结合本节课的教学内容和学生的认知水平,在教法上,我采用问答探究式的教学方法,层层深入。充分发挥教师的主导作用,让学生真正成为教学活动的主体。2、教学手段:通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性。四、教学过程分析1、复习回顾,问题引入 屏幕显示 问题1在日常生活中,我们往往并不需要了解总体的分布形态,而是更关心总体的某一数字特征,例如:买灯泡时,我们希望知道灯泡的平均使用寿命,我们怎样了解灯泡的的使用寿命呢?当然不能把所有灯泡一一测试,因为测试后灯泡则报废了。于是,需要通过随机抽样,把这批灯泡的寿命看作总体,从中随机取出若干个个体作为样本,算出样本的数字特征,用样本的数字特征来估计总体的数字特征。提出问题:什么是平均数,众数,中位数?(教师提问,铺垫复习,学生思考、积极回答。根据学生回答,给出补充总结,借助用多媒体分别给出他们的定义)设计意图使学生对本节课的学习做好知识准备。(进一步提出实例、导入新课。)屏幕显示 问题2选择薪水高的职业是人之常情,假如你大学毕业有两个工作相当的单位可供选择,现各从甲乙两单位分别随机抽取了 50名员工的月工资资料如下(单位:元)分组计算这两组50名员工的月工资平均数,众数,中位数并估计这两个公司员工的平均工资。你选择哪一个公司,并说明你的理由。(学生分组分别求两组数据的平均工资。学生:甲、乙平均工资分别为:甲:1320元,乙:1530元。所以我选乙公司。学生乙:甲、乙两公司的众数分别为甲:1200,乙:1000,所以我选择甲公司。学生丙:我要根据我的能力选择。)设计意图学生按常理做出选择,教师指出只凭平均工资做出判断的依据并不可靠,从而引导学生进一步深入问题。2讲授新课,深入认识 屏幕显示例如,在上一节抽样调查的100位居民的月均用水量的数据中,我们画出了这组数据的频率分布直方图。现在,观察这组数据的频率分布直方图,能否得出这组数据的众数、中位数和平均数?(把学生分成若干小组,分别计算平均数、中位数、众数,或估计平均数、中位数、众数。然后比较结果,会发现通过计算的结果和通过估计的结果出现了一定的误差。引导学生分析产生误差的原因。原因是由于样本数据的频率分布直方图把原始的一些数据给遗失了。让学生明白产生这样的误差对总体的估计没有大的影响,因为样本本身也有随机性。)设计意图让学生懂得如何根据频率分布直方图估计样本的平均数、中位数和众数。使学生明白从直方图中估计样本的数字特征虽然会有一些误差,但直观、快速、可避免繁琐的计算和阅读数据的过程。提出问题根据样本的众数、中位数、平均数估计总体平均数的基本数据,并对上一节的探究问题制定一个合理平价用水量的的标准。(师生通过共同交流探讨得知仅以平均数或只使用中位数或众数制定出平价用水标准都是不合理的,必须综合考虑才能做出合理的选择)设计意图使学生会依据众数、中位数、平均数对数据进行综合判断,并做出合理选择。也为接下来对他们优缺点的总结打下基础。总结出众数、中位数、平均数三种数字特征的优缺点。(先由学生思考,然后再老师的引导下做出总结)设计意图使学生能更准确更全面地依据样本的众数、中位数、平均数对数据进行综合判断,并做出合理选择,使实际问题得到正确的解决。3、反思小结、培养能力学习利用频率直方图估计总体的众数、中位数和平均数的方法。介绍众数、中位数和平均数这三个特征数的优点和缺点。学习如何利用众数、中位数和平均数的特征去分析解决实际问题。设计意图小节是一堂课的概括和总结,有利于优化学生的认知结构,把课堂教学传授的知识较快转化为学生的素质,也更进一步培养学生的归纳概括能力4、课后作业,自主学习课本练习 设计意图 课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。5、板书设计高中数学说课稿篇5各位评委老师,大家好!我是本科数学号选手,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时 函数单调性与最大(小)值。我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批评指正。一、教材分析1、教材的地位和作用(1)本节课主要对函数单调性的学习;(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)(3)它是历年高考的热点、难点问题2、教材重、难点重点:函数单调性的定义难点:函数单调性的证明重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)二、教学目标知识目标:(1)函数单调性的定义(2)函数单调性的证明能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想情感目标:培养学生勇于探索的精神和善于合作的意识三、教法学法分析1 教法分析“教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法2、学法分析“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。四、教学过程1、以旧引新,导入新知通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x-2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x c 2的图像是一个曲线,在(-8,0)上是下降的,而 在(0,+8)上是上升的。(适当添加手势,这样看起来更自然)2、创设问题,探索新知紧接着提出问题,你能用二次函数f (x)=x M表达式来描述函 数 在(-8,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。让学生模仿刚才的表述法来描述二次函数f (x)=x-2在(0,+8)的图像,并找个别同学起来作答,规范学生的数学用语。让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。3、例题讲解,学以致用例1主要是对函数单调区间的巩固运用,通过观察函数定义在(一5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x l)-f(x 2)化简成和差积商的形式,再比较与。的大小。学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。4、归纳小结本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。5、作业布置为了让学生学习不同的数学,我将采用分层布置作业的方式:一 组 习 题1、3 A组1、2、3 ,二 组 习 题1、3 A组2、3、B组1、26、板书设计我力求简洁明了地概括本节课的学习要点,让学生一目了然。五、教学评价本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。以上就是我对本节课的设计,谢 谢!高 中 数 学 说 课 稿 篇61、教学目标:一、借助单位圆理解任意角的三角函数的定义。二、根据三角函数的定义,能够判断三角函数值的符号。三、通过学生积极参与知识的发现与形成的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。四、让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。2、教学重点与难点:重点:任意角的正弦、余弦、正切的定义;三角函数值的符号。难点:任意角的三角函数概念的建构过程。授课过程:一、引入在我们的现实世界中的许多运动变化都有循环往复、周而复始的现象,这种变化规律称为周期性。如何用数学的方法来刻画这种变化?从这节课开始,我们要来学习刻画这种规律的数学模型之一一一三角函数。二、创设情境三角函数是与角有关的函数,在学习任意角概念时,我们知道在直角坐标系中研究角,可以给学习带来许多方便,比如我们可以根据角终边的位置把它们进行归类,现在大家考虑:若在直角坐标系中来研究锐角,则锐角三角函数又可怎样定义呢?学生情况估计:学生可能会提出两种定义的方式,一种定义为边之比,另一种定义在比值中引入了终边上的一点P的坐标。问题:1、锐角三角函数能否表示成第二种比值方式?2、点P能否取在终边上的其它位置?为什么?3、点P在哪个位置,比值会更简洁?(引出单位圆的定义)。指 出s i n a=m P的函数依旧表示一个比值,不过其分母为1而已。练习:计算的各三角函数值。三、任意角的三角函数的定义角的概念已经推广道了任意角,那么三角函数的定义在任意角的范围里改怎么定义呢?尝试:根据锐角三角函数的定义,你能尝试着给出任意角三角函数的定义吗?评价学生给出的定义。给出任意角三角函数的定义。四、解析任意角三角函数的定义三角函数首先是函数。你能从函数观点解析三角函数吗?(定义域)对于确定的角a,上面三个函数值都是唯一确定的,所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。由于角的集合和实数集之间可以建立一一对应的关系,三角函数可以看成是自变量为实数的函数。五、三角函数的应用。1、已知角,求 a 的三角函数值。2、已知角a 终边上的一点P(-3,-4),求各三角函数值。以上两道书上的例题,让学生自习看书,学生看书的同时,老师提出问题:1、已知角如何求三角函数值?2、利用角a的终边上任意一点的坐标也可以定义三角函数,你能给出这种定义吗?(这种定义与课本中给出的定义各有什么特点?)3、变式:已知角a终边上点P (-3 b,-4 b),(b O),求 角a的各三角函数值。4、探究:三角函数的值在各象限的符号。六、小结及作业教案设计说明:新教材的教学理念之一是让学生去体验新知识的发生过程,这 节 任意角三角函数的教案,主要围绕这一点来设计。首先,角的概念推广了,那么锐角三角函数的定义是否也该推广到任意角的三角函数的定义呢?通过这个问题,让学生体会到新知识的发生是可能的,自然的。其次,到底应该怎样去合理定义任意角的三角函数呢?让学生提出自己的想法,同时让学生去辨证这个想法是否是科学的?因为一个概念是严谨的,科学的,不能随心所欲地编造,必须去论证它的合理性,至少这种概念不能和锐角三角函数的定义有所冲突。在这个立一破的过程中,让学生去体验一个新的数学概念可能是如何形成,在形成的过程中可以从哪些角度加以科学的辩思。这样也有助于学生对任意角三角函数概念的理解。再次,让学生充分体会在任意角三角函数定义的推广中,是如何将直角三角形这个形的问题,转换到直角坐标系下点的坐标这个数的过程的。培养数形结合的思想。高中数学说课稿篇7我说课的内容是高中数学第二册(上册)第 七 章 直线和圆的方程中的第六节“曲线和方程”的第一课时,下面我的说课将从以下几个方面进行阐述:一、教材分析教材的 地位和作用“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,对全部解析几何教学有着深远的影响。学生只有透彻理解了曲线和方程的意义,才算是寻得了解析几何学习的入门之径。如果以为学生不真正领悟曲线和方程的关系,照样能求出方程、照样能计算某些难题,因而可以忽视这个基本概念的教学,这不能不说是一种“舍本逐题”的偏见,应该认识到这节“曲线和方程”的开头课是解析几何教学的“重头戏”!根据以上分析,确立教学重点是:“曲线的方程”与“方程的曲线”的概念;难点是:怎样利用定义验证曲线是方程的曲线,方程是曲线的方程。二、教学目标根据教学大纲的要求以及本教材的地位和作用,结合高二学生的认知特点确定教学目标如下:知识目标:1、了解曲线上的点与方程的解之间的一一对应关系;2、初步领会“曲线的方程”与“方程的曲线”的概念;3、学会根据已有的情景资料找规律,进而分析、判断、归纳结论;4、强 化“形”与“数”一致并相互转化的思想方法。能力目标:1、通过直线方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识;2、在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活动过程,探索出结论,并能有条理的阐述自己的观点;3、能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。情感目标:1、通过概念的引入,让学生感受从特殊到一般的认知规律;2、通过反例辨析和问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。三、重难点突破“曲线的方程”与“方程的曲线”的概念是本节的重点,这是由于本节课是由直观表象上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延。由于学生已经具备了用方程表示直线、抛物线等实际模型,积累了感性认识的基础,所以可用举反例的方法来解决困惑,通过反例揭示“两者缺一”与直觉的矛盾,从而乂促使学生对概念表述的严密性进行探索,自然地得出定义。为了强化其认识,又决定用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。怎样利用定义验证曲线是方程的曲线,方程是曲线的方程是本节的难点。因为学生在作业中容易犯想当然的错误,通常在由已知曲线建立方程的时候,不验证方程的解为坐标的点在曲线上,就断然得出所求的是曲线方程。这种现象在高考中也屡见不鲜。为了突破难点,本节课设计了三种层次的问题,幻灯片9是概念的直接运用,幻灯片10是概念的逆向运用,幻灯片11是证明曲线的方程。通过这些例题让学生再一次体会“二者”缺一不可。四、学情分析此前,学生已知,在建立了直角坐标系后平面内的点和有序实数对之间建立了一一对应关系,已有了用方程(有时以函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程,对学生有相当大的难度。学生在学习时容易产生的问题是,不 理 解“曲线上的点的坐标都是方程的解”和“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系时各自所起的作用。本节课的教学目标也只能是初步领会,要求学生能答出曲线和方程间必须满足两个关系时才能称作“曲线的方程”和“方程的曲线”,两者缺一不可,并能借助实例指出两个关系的区别。高中数学说课稿篇8一、教学目标()知识与技能1、进一步熟练掌握求动点轨迹方程的基本方法。2、体会数学实验的直观性、有效性,提高几何画板的操作能力。(二)过程与方法1、培养学生观察能力、抽象概括能力及创新能力。2、体会感性到理性、形象到抽象的思