2018年福建省中考数学(a卷)试题及答案.docx
-
资源ID:93828391
资源大小:188.86KB
全文页数:23页
- 资源格式: DOCX
下载积分:7.5金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2018年福建省中考数学(a卷)试题及答案.docx
2018年福建省中考数学试卷(A卷)一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共40分)1(4.00分)在实数|3|,2,0,中,最小的数是()A|3|B2C0D2(4.00分)某几何体的三视图如图所示,则该几何体是()A圆柱B三棱柱C长方体D四棱锥3(4.00分)下列各组数中,能作为一个三角形三边边长的是()A1,1,2B1,2,4C2,3,4D2,3,54(4.00分)一个n边形的内角和为360°,则n等于()A3B4C5D65(4.00分)如图,等边三角形ABC中,ADBC,垂足为D,点E在线段AD上,EBC=45°,则ACE等于()A15°B30°C45°D60°6(4.00分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A两枚骰子向上一面的点数之和大于1B两枚骰子向上一面的点数之和等于1C两枚骰子向上一面的点数之和大于12D两枚骰子向上一面的点数之和等于127(4.00分)已知m=+,则以下对m的估算正确的()A2m3B3m4C4m5D5m68(4.00分)我国古代数学著作增删算法统宗记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺设绳索长x尺,竿长y尺,则符合题意的方程组是()ABCD9(4.00分)如图,AB是O的直径,BC与O相切于点B,AC交O于点D,若ACB=50°,则BOD等于()A40°B50°C60°D80°10(4.00分)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A1一定不是关于x的方程x2+bx+a=0的根B0一定不是关于x的方程x2+bx+a=0的根C1和1都是关于x的方程x2+bx+a=0的根D1和1不都是关于x的方程x2+bx+a=0的根二、细心填一填(本大题共6小题,每小题4分,满分24分,请把答案填在答題卷相应题号的横线上)11(4.00分)计算:()01= 12(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为 13(4.00分)如图,RtABC中,ACB=90°,AB=6,D是AB的中点,则CD= 14(4.00分)不等式组的解集为 15(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上若AB=,则CD= 16(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BCx轴,ACy轴,则ABC面积的最小值为 三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17(8.00分)解方程组:18(8.00分)如图,ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F求证:OE=OF19(8.00分)先化简,再求值:(1)÷,其中m=+120(8.00分)求证:相似三角形对应边上的中线之比等于相似比要求:根据给出的ABC及线段A'B,A(A=A),以线段AB为一边,在给出的图形上用尺规作出A'BC,使得A'BCABC,不写作法,保留作图痕迹;在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程21(8.00分)如图,在RtABC中,C=90°,AB=10,AC=8线段AD由线段AB绕点A按逆时针方向旋转90°得到,EFG由ABC沿CB方向平移得到,且直线EF过点D(1)求BDF的大小;(2)求CG的长22(10.00分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:估计甲公司各揽件员的日平均件数;小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由23(10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中ADMN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值24(12.00分)已知四边形ABCD是O的内接四边形,AC是O的直径,DEAB,垂足为E(1)延长DE交O于点F,延长DC,FB交于点P,如图1求证:PC=PB;(2)过点B作BCAD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2若AB=,DH=1,OHD=80°,求BDE的大小25(14.00分)已知抛物线y=ax2+bx+c过点A(0,2)(1)若点(,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1x20时,(x1x2)(y1y2)0;当0x1x2时,(x1x2)(y1y2)0以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且ABC有一个内角为60°求抛物线的解析式;若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分MPN2018年福建省中考数学试卷(A卷)参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共40分)1(4.00分)【考点】15:绝对值;2A:实数大小比较【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案【解答】解:在实数|3|,2,0,中,|3|=3,则20|3|,故最小的数是:2故选:B【点评】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键2(4.00分)【考点】U3:由三视图判断几何体【分析】根据常见几何体的三视图逐一判断即可得【解答】解:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C【点评】本题主要考查由三视图判断几何体,解题的关键是掌握常见几何体的三视图3(4.00分)【考点】K6:三角形三边关系【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+24,不满足三边关系,故错误;C、2+34,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误故选:C【点评】本题主要考查了三角形三边关系的运用,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形4(4.00分)【考点】L3:多边形内角与外角【分析】n边形的内角和是(n2)180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n【解答】解:根据n边形的内角和公式,得:(n2)180=360,解得n=4故选:B【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键5(4.00分)【考点】KG:线段垂直平分线的性质;KK:等边三角形的性质【分析】先判断出AD是BC的垂直平分线,进而求出ECB=45°,即可得出结论【解答】解:等边三角形ABC中,ADBC,BD=CD,即:AD是BC的垂直平分线,点E在AD上,BE=CE,EBC=ECB,EBC=45°,ECB=45°,ABC是等边三角形,ACB=60°,ACE=ACBECB=15°,故选:A【点评】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出ECB是解本题的关键6(4.00分)【考点】X1:随机事件【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D【点评】此题主要考查了随机事件,关键是掌握随机事件定义7(4.00分)【考点】2B:估算无理数的大小【分析】直接化简二次根式,得出的取值范围,进而得出答案【解答】解:m=+=2+,12,3m4,故选:B【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键8(4.00分)【考点】99:由实际问题抽象出二元一次方程组【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组【解答】解:设索长为x尺,竿子长为y尺,根据题意得:故选:A【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键9(4.00分)【考点】M5:圆周角定理;MC:切线的性质【分析】根据切线的性质得到ABC=90°,根据直角三角形的性质求出A,根据圆周角定理计算即可【解答】解:BC是O的切线,ABC=90°,A=90°ACB=40°,由圆周角定理得,BOD=2A=80°,故选:D【点评】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键10(4.00分)【考点】AA:根的判别式.【分析】根据方程有两个相等的实数根可得出b=a+1或b=(a+1),当b=a+1时,1是方程x2+bx+a=0的根;当b=(a+1)时,1是方程x2+bx+a=0的根再结合a+1(a+1),可得出1和1不都是关于x的方程x2+bx+a=0的根【解答】解:关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,b=a+1或b=(a+1)当b=a+1时,有ab+1=0,此时1是方程x2+bx+a=0的根;当b=(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根a+10,a+1(a+1),1和1不都是关于x的方程x2+bx+a=0的根故选:D【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当=0时,方程有两个相等的实数根”是解题的关键二、细心填一填(本大题共6小题,每小题4分,满分24分,请把答案填在答題卷相应题号的横线上)11(4.00分)【考点】6E:零指数幂【分析】根据零指数幂:a0=1(a0)进行计算即可【解答】解:原式=11=0,故答案为:0【点评】此题主要考查了零指数幂,关键是掌握a0=1(a0)12(4.00分)【考点】W5:众数【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数【解答】解:这组数据中120出现次数最多,有3次,这组数据的众数为120,故答案为:120【点评】本题主要考查众数,解题的关键是掌握众数的定义:一组数据中出现次数最多的数据13(4.00分)【考点】KP:直角三角形斜边上的中线【分析】根据直角三角形斜边上的中线等于斜边的一半解答【解答】解:ACB=90°,D为AB的中点,CD=AB=×6=3故答案为:3【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键14(4.00分)【考点】CB:解一元一次不等式组【分析】先求出每个不等式的解集,再求出不等式组的解集即可【解答】解:解不等式得:x1,解不等式得:x2,不等式组的解集为x2,故答案为:x2【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键15(4.00分)【考点】KQ:勾股定理【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论【解答】解:如图,过点A作AFBC于F,在RtABC中,B=45°,BC=AB=2,BF=AF=AB=1,两个同样大小的含45°角的三角尺,AD=BC=2,在RtADF中,根据勾股定理得,DF=CD=BF+DFBC=1+2=1,故答案为:1【点评】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键16(4.00分)【考点】G8:反比例函数与一次函数的交点问题【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,)将y=x+m代入y=,整理得x2+mx3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以a、b是方程x2+mx3=0的两个根,根据根与系数的关系得出a+b=m,ab=3,那么(ab)2=(a+b)24ab=m2+12再根据三角形的面积公式得出SABC=ACBC=m2+6,利用二次函数的性质即可求出当m=0时,ABC的面积有最小值6【解答】解:设A(a,),B(b,),则C(a,)将y=x+m代入y=,得x+m=,整理,得x2+mx3=0,则a+b=m,ab=3,(ab)2=(a+b)24ab=m2+12SABC=ACBC=()(ab)=(ab)=(ab)2=(m2+12)=m2+6,当m=0时,ABC的面积有最小值6故答案为6【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点也考查了函数图象上点的坐标特征,根与系数的关系,三角形的面积,二次函数的性质三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17(8.00分)【考点】98:解二元一次方程组【分析】方程组利用加减消元法求出解即可【解答】解:,得:3x=9,解得:x=3,把x=3代入得:y=2,则方程组的解为【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法18(8.00分)【考点】KD:全等三角形的判定与性质;L5:平行四边形的性质【分析】由四边形ABCD是平行四边形,可得OA=OC,ADBC,继而可证得AOECOF(ASA),则可证得结论【解答】证明:四边形ABCD是平行四边形,OA=OC,ADBC,OAE=OCF,在OAE和OCF中,AOECOF(ASA),OE=OF【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质此题难度适中,注意掌握数形结合思想的应用19(8.00分)【考点】6D:分式的化简求值【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题【解答】解:(1)÷=,当m=+1时,原式=【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法20(8.00分)【考点】SB:作图相似变换【分析】(1)作A'B'C=ABC,即可得到A'BC;(2)依据D是AB的中点,D'是A'B'的中点,即可得到=,根据ABCA'B'C',即可得到=,A'=A,进而得出A'C'D'ACD,可得=k【解答】解:(1)如图所示,A'BC即为所求;(2)已知,如图,ABCA'B'C',=k,D是AB的中点,D'是A'B'的中点,求证:=k证明:D是AB的中点,D'是A'B'的中点,AD=AB,A'D'=A'B',=,ABCA'B'C',=,A'=A,=,A'=A,A'C'D'ACD,=k【点评】本题考查了相似三角形的性质与判定,主要利用了相似三角形的性质,相似三角形对应边成比例的性质,以及两三角形相似的判定方法,要注意文字叙述性命题的证明格式21(8.00分)【考点】Q2:平移的性质;R2:旋转的性质;S9:相似三角形的判定与性质【分析】(1)由旋转的性质得,AD=AB=10,ABD=45°,再由平移的性质即可得出结论;(2)先判断出ADE=ACB,进而得出ADEACB,得出比例式求出AE,即可得出结论【解答】解:(1)线段AD是由线段AB绕点A按逆时针方向旋转90°得到,DAB=90°,AD=AB=10,ABD=45°,EFG是ABC沿CB方向平移得到,ABEF,BDF=ABD=45°;(2)由平移的性质得,AECG,ABEF,DEA=DFC=ABC,ADE+DAB=180°,DAB=90°,ADE=90°,ACB=90°,ADE=ACB,ADEACB,AC=8,AB=AD=10,AE=12.5,由平移的性质得,CG=AE=12.5【点评】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质,解直角三角形,相似三角形的判定和性质,判断出ADEACB是解本题的关键22(10.00分)【考点】V5:用样本估计总体;VC:条形统计图;W2:加权平均数;X4:概率公式【分析】(1)根据概率公式计算可得;(2)分别根据平均数的定义及其意义解答可得【解答】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)甲公司各揽件员的日平均件数为=39件;甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=40+×4+×6=159.4元,因为159.4148,所以仅从工资收入的角度考虑,小明应到乙公司应聘【点评】本题主要考查概率公式,解题的关键是掌握概率=所求情况数与总情况数之比及平均数的定义及其意义23(10.00分)【考点】AD:一元二次方程的应用;HE:二次函数的应用【分析】(1)设AB=xm,则BC=(1002x)m,利用矩形的面积公式得到x(1002x)=450,解方程得x1=5,x2=45,然后计算1002x后与20进行大小比较即可得到AD的长;(2)设AD=xm,利用矩形面积得到S=x(100x),配方得到S=(x50)2+1250,讨论:当a50时,根据二次函数的性质得S的最大值为1250;当0a50时,则当0xa时,根据二次函数的性质得S的最大值为50aa2【解答】解:(1)设AB=xm,则BC=(1002x)m,根据题意得x(1002x)=450,解得x1=5,x2=45,当x=5时,1002x=9020,不合题意舍去;当x=45时,1002x=10,答:AD的长为10m;(2)设AD=xm,S=x(100x)=(x50)2+1250,当a50时,则x=50时,S的最大值为1250;当0a50时,则当0xa时,S随x的增大而增大,当x=a时,S的最大值为50aa2,综上所述,当a50时,S的最大值为1250;当0a50时,S的最大值为50aa2【点评】本题考查了二次函数的应用:解此类题的关键是通过几何性质确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围24(12.00分)【考点】MR:圆的综合题.【分析】(1)先判断出BCDF,再利用同角的补角相等判断出F=PCB,即可得出结论;(2)先判断出四边形DHBC是平行四边形,得出BC=DH=1,再用锐角三角函数求出ACB=60°,进而判断出DH=OD,求出ODH=20°,即可得出结论【解答】解:(1)如图1,AC是O的直径,ABC=90°,DEAB,DEA=90°,DEA=ABC,BCDF,F=PBC,四边形BCDF是圆内接四边形,F+DCB=180°,PCB+DCB=180°,F=PCB,PBC=PCB,PC=PB;(2)如图2,连接OD,AC是O的直径,ADC=90°,BGAD,AGB=90°,ADC=AGB,BGDC,BCDE,四边形DHBC是平行四边形,BC=DH=1,在RtABC中,AB=,tanACB=,ACB=60°,BC=AC=OD,DH=OD,在等腰三角形DOH中,DOH=OHD=80°,ODH=20°,设DE交AC于N,BCDE,ONH=ACB=60°,NOH=180°(ONH+OHD)=40°,DOC=DOHNOH=40°,OA=OD,OAD=DOC=20°,CBD=OAD=20°,BCDE,BDE=CBD=20°【点评】此题是圆的综合题,主要考查了圆的有关性质,等腰三角形的判定和性质,平行线的判定和性质,平行四边形的判定和性质,解直角三角形,相似三角形的判定和性质,还考查了学生的运算能力,推理能力,空间观念与几何直观,判断出DH=OD是解本题的关键25(14.00分)【考点】HF:二次函数综合题【分析】(1)由抛物线经过点A可求出c=2,再代入(,0)即可找出2ab+2=0(a0);(2)根据二次函数的性质可得出抛物线的对称轴为y轴、开口向下,进而可得出b=0,由抛物线的对称性可得出ABC为等腰三角形,结合其有一个60°的内角可得出ABC为等边三角形,设线段BC与y轴交于点D,根据等边三角形的性质可得出点C的坐标,再利用待定系数法可求出a值,此题得解;由的结论可得出点M的坐标为(x1,+2)、点N的坐标为(x2,+2),由O、M、N三点共线可得出x2=,进而可得出点N及点N的坐标,由点A、M的坐标利用待定系数法可求出直线AM的解析式,利用一次函数图象上点的坐标特征可得出点N在直线PM上,进而即可证出PA平分MPN【解答】解:(1)抛物线y=ax2+bx+c过点A(0,2),c=2又点(,0)也在该抛物线上,a()2+b()+c=0,2ab+2=0(a0)(2)当x1x20时,(x1x2)(y1y2)0,x1x20,y1y20,当x0时,y随x的增大而增大;同理:当x0时,y随x的增大而减小,抛物线的对称轴为y轴,开口向下,b=0OA为半径的圆与拋物线的另两个交点为B、C,ABC为等腰三角形,又ABC有一个内角为60°,ABC为等边三角形设线段BC与y轴交于点D,则BD=CD,且OCD=30°,又OB=OC=OA=2,CD=OCcos30°=,OD=OCsin30°=1不妨设点C在y轴右侧,则点C的坐标为(,1)点C在抛物线上,且c=2,b=0,3a+2=1,a=1,抛物线的解析式为y=x2+2证明:由可知,点M的坐标为(x1,+2),点N的坐标为(x2,+2)直线OM的解析式为y=k1x(k10)O、M、N三点共线,x10,x20,且=,x1+=x2+,x1x2=,x1x2=2,即x2=,点N的坐标为(,+2)设点N关于y轴的对称点为点N,则点N的坐标为(,+2)点P是点O关于点A的对称点,OP=2OA=4,点P的坐标为(0,4)设直线PM的解析式为y=k2x+4,点M的坐标为(x1,+2),+2=k2x1+4,k2=,直线PM的解析式为y=x+4+4=+2,点N在直线PM上,PA平分MPN【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、等边三角形的性质以及一次(二次)函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征求出a、b满足的关系式;(2)利用等边三角形的性质找出点C的坐标;利用一次函数图象上点的坐标特征找出点N在直线PM上第23页(共23页)