2023年中考七年级上册数学知识点.docx
2023中考七年级上册数学知识点 2023中考七年级上册数学学问点 【篇一】 三角函数关系 倒数关系 tan·cot=1 sin·csc=1 cos·sec=1 商的关系 sin/cos=tan=sec/csc cos/sin=cot=csc/sec 平方关系 sin2()+cos2()=1 1+tan2()=sec2() 1+cot2()=csc2() 【篇二】 同角三角函数关系六角形记忆法 构造以上弦、中切、下割;左正、右余、中间1的正六边形为模型。 倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 【篇三】 锐角三角函数定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin)等于对边比斜边;sinA=a/c 余弦(cos)等于邻边比斜边;cosA=b/c 正切(tan)等于对边比邻边;tanA=a/b 余切(cot)等于邻边比对边;cotA=b/a 正割(sec)等于斜边比邻边;secA=c/b 余割(csc)等于斜边比对边。cscA=c/a 【篇四】 互余角的三角函数间的关系 sin(90°-)=cos,cos(90°-)=sin, tan(90°-)=cot,cot(90°-)=tan. 平方关系: sin2()+cos2()=1 tan2()+1=sec2() cot2()+1=csc2() 积的关系: sin=tan·cos cos=cot·sin tan=sin·sec cot=cos·csc sec=tan·csc csc=sec·cot 倒数关系: tan·cot=1 sin·csc=1 cos·sec=1 【篇五】 圆的定理: 1不在同始终线上的三点确定一个圆。 2垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧 推论1平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2圆的两条平行弦所夹的弧相等 3圆是以圆心为对称中心的中心对称图形 4圆是定点的距离等于定长的点的集合 5圆的内部可以看作是圆心的距离小于半径的点的集合 6圆的外部可以看作是圆心的距离大于半径的点的集合 7同圆或等圆的半径相等 8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 9定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 10推论在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。 2023中考七年级数学学习方法 养成良好的课前和课后学习习惯:在当前高中数学学习中,培育正确的学习习惯是一项重要的学习技能。虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。学生们不得不预习课本。我预备的数学教科书不是简洁的阅读,而是一个例子,至少非常钟的思索。在使用前不能通过学习学问解决问题的状况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,把握解决问题的思路。同时,在课堂上安排笔记也是必要的。在高中数学讨论中,建议采纳两种形式的笔记,一种是课堂速记,另一种是课后笔记。这不仅提高了课堂记忆的汲取力量,而且有助于对笔记内容的查询。 2023中考七年级数学学习技巧 1.先看笔记后做作业。 有的同学感到,教师讲过的,自己已经听得明明白白了。但是为什么你这么做有那么多困难呢?缘由是学生对教师所说的理解没有到达教师要求的水平。 因此,每天做作业之前,我们必需先看一下课本的相关内容和当天的课堂笔记。能否如此坚持,经常是好学生与差学生的最大区分。尤其是当练习不匹配时,教师通常没有刚刚讲过的练习类型,因此它们不能被比拟和消化。假如你不重视这个实施,在很长一段时间内,会造成很大的损失。 2.做题之后加强反思。 学生肯定要明确,现在正做着的题,肯定不是考试的题目。但使用现在做主题的解决问题的思路和方法。因此,我们应当反思我们所做的每一个问题,并总结我们自己的收获。 要总结出:这是一道什么内容的题,用的是什么方法。做到学问成片,问题成串。日复一日,建立科学的网络系统的内容和方法。俗话说: 有钱难买回头看 。做完作业,回头细看,价值极大。这一回忆,是学习过程中一个特别重要的环节。 2023中考七年级上册数学学问点