半导体激光器.docx
半导体激光器半导体激光器半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激 光的详细过程比较特殊。常用材料有硅化钱(GaAs)、硫化镉(CdS)、磷化锢(InP)、硫化 锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。半导体激光器件,可分为 同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器室温时多为脉冲器件, 而双异质结激光器室温时可实现连续工作。半导体激光器的分类(1)异质结构激光器 (2)条形结构激光器(3) AIGaAs/GaAs激光器 (4)InGaAsP/InP激光器 (5)可见光激光器(6)远红外激光器 (7)动态单模激光器(8)分布反馈激光器(9)量子阱激光器(10)表面放射激光器(11)微腔激光器半导体激光器半导体激光(Semiconductor laser)在1962年被胜利激发,在1970年实现室温下连续输 出。后来经过改良,开发出双异质接合型激光及条纹型构造的激光二极管(Laserdiode)等, 广泛使用于光纤通信、光盘、激光打印机、激光扫描器、激光指示器(激光笔),是目前生 产量最大的激光器。激光二极体的优点是效率高、体积小、重量轻且价格低。尤其是多重量子井型的效率有2040%, P-N型也达到数25%,总而言之能量效率高是其最大特色。 此外,它的连续输出波长涵盖了红外线到可见光范围,而光脉冲输出达50W (带宽100ns) 等级的产品也已商业化,作为激光雷达或激发光源可说是特别简洁使用的激光的例子。仪器简介Q-Line纤绿半导体激光器半导体激光器是以肯定的半导体材料做工作物质而产生受激放射作用的器件.其工作原理 是,通过肯定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能 带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状 态的大量电子与空穴复合时,便产生受激放射作用.半导体激光器的激励方式主要有三种, 即电注入式,光泵式和高能电子束激励式,电注入式半导体激光器,一般是由GaAS(碑化 WJnAS (碑化锢),Insb (睇化锢)等材料制成的半导风光结型二极管,沿正向偏压注入电 流进行激励,在结平面区域产生受激放射.光泵式半导体激光器,一般用N型或P型半导体 单晶(如GaAS,InAs,InSb等)做工作物质,以其他激光器发出的激光作光泵激励.高能电子 束激励式半导体激光器,一般也是用N型或者P型半导体单晶(如PbS,CdS,ZhO等)做工作 物质,通过由外部注入高能电子束进行激励.在半导体激光器件中,目前性能较好,应用较 广的是具有双异质结构的电注入式GaAs二极管激光器.工作原理及特点半导体激光器工作原理是激励方式,采用半导体物质(即采用电子)在能带间跃迁发光, 用半导体晶便的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、 产生光的辐射放大,输出激光。 半导体激光器优点是体积小,重量轻,运转牢靠,耗 电少,效率高等。封装技术技术介绍半导体激光器封装技术大都是在分立器件封装技术基础上进展与演化而来的,但却有很 大的特殊性。一般状况下,分立器件的管芯被密封在封装体内,封装的作用主要是爱护管芯 和完成电气互连。而半导体激光器封装则是完成输出电信号,爱护管芯正常工作,输出:可 见光的功能,既有电参数,又有光参数的设计及技术要求,无法简洁地将分立器件的封装用 于半导体激光器。发光部分半导体激光器的核心发光部分是由p型和n型半导体构成的pn结管芯,当注入pn结的 少数载流子与多数载流子复合时,就会发出可见光,紫外光或近红外光。但pn结区发出的 光子是非定向的,即向各个方向放射有相同的几率,因此,并不是管芯产生的全部光都可以 释放出来,这主耍取决于半导体材料质量、管芯结构及几何外形、封装内部结构与包封材料, 应用要求提高半导体激光器的内、外部量子效率。常规5mm型半导体激光器封装是将边 长0.25mm的正方形管芯粘结或烧结在引线架上,管芯的正极通过球形接触点与金丝,键合 为内引线与一条管脚相连,负极通过反射杯和引线架的另一管脚相连,然后其顶部用环氧树 脂包封。反射杯的作用是收集管芯侧面、界面发出的光,向期望的方向角内放射。顶部包封 的环氧树脂做成肯定外形,有这样几种作用:爱护管芯等不受外界侵蚀;采纳不同的外形和 材料性质(掺或不掺散色剂),起透镜或漫射透镜功能,掌握光的发散角;管芯折射率与空 气折射率相关太大,致使管芯内部的全反射临界角很小,其有源层产生的光只有小部分被取 出,大部分易在管芯内部经多次反射而被汲取,易发生全反射导致过多光损失,选用相应折 射率的环氧树脂作过渡,提高管芯的光出射效率。用作构成管壳的环氧树脂须具有耐湿性, 绝缘性,机械强度,对管芯发出光的折射率和透射率高。选择不同折射率的封装材料,封装 几何外形对光子逸出效率的影响是不同的,发光强度的角分布也与管芯结构、光输出方式、 封装透镜所用材质和外形有关。若采纳尖形树脂透镜,可使光集中到半导体激光器的轴线方 向,相应的视角较小;假如顶部的树脂透镜为圆形或平面型,其相应视角将增大。驱动电流一般状况下,半导体激光器的发光波长随温度变化为0. 2-0. 3nm/,光谱宽度随之 增加,影响颜色艳丽度。此外,当正向电流流经pn结,发热性损耗使结区产生温升,在室 温四周,温度每上升1,半导体激光器的发光强度会相应地削减1%左右,封装散热;时 保持色纯度与发光强度特别重要,以往多采纳削减其驱动电流的方法,降低结温,多数半导 体激光器的驱动电流限制在20mA左右。但是,半导体激光器的光输出会随电流的增大而增 加,目前,很多功率型半导体激光器的驱动电流可以达到70mA、100mA甚至1A级,需要 改进封装结构,全新的半导体激光器封装设计理念和低热阻封装结构及技术,改善热特性。 例如,采纳大面积芯片倒装结构,选用导热性能好的银胶,增大金属支架的表面积,焊料凸 点的硅载体直接装在热沉上等方法。止匕外,在应用设计中,PCB线路板等的热设计、导热 性能也特别重要。 进入21世纪后,半导体激光器的高效化、超高亮度化、全色化不断 进展创新,红、橙半导体激光器光效已达到100Im/W,绿半导体激光器为501m/W,单只半 导体激光器的光通量也达到数十Im。半导体激光器芯片和封装不再沿龚传统的设计理念与 制造生产模式,在增加芯片的光输出方面,研发不仅仅限于转变材料内杂质数量,晶格缺陷 和位错来提高内部效率,同时,如何改善管芯及封装内部结构,增加半导体激光器内部产生 光子出射的几率,提高光效,解决散热,取光和热沉优化设计,改进光学性能,加速表面贴 装化SMD进程更是产业界研发的主流方向。打算波长的因素半导体光电器件的工作波长是和制作器件所用的半导体材料的种类相关的。半导体材料中存 在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和 价带之间隔着一条禁带,当电子汲取了光的能量从价带跳动到导带中去时,就把光的能量变 成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽 度就打算了光电器件的工作波长。材料科学的进展使我们能采纳能带工程对半导体材料的能 带进行各种精致的裁剪,使之能满意我们的各种需要并为我们做更多的事情,也能使半导体 光电器件的工作波长突破材料禁带宽度的限制扩展到更宽的范围。 以上资料由草丛飞供 应。腔长与损耗的关系激光器的腔体可以有谐振腔和外腔之分。在谐振腔里,激光器的损耗有很多种类,比如 偏折损耗,法布里珀罗谐振腔就有较大偏折损耗,而共焦腔的偏折损耗较小,适合于小功率 连续输出激光,还比如反转粒子的无辐射跃迁损耗(这类损耗可以归为白噪声)等等之类的, 都是腔长长损耗大。激光器阈值电流不过就是能让激光器起振的电流,谐振腔长短的不同可 以使得阈值电流有所不同,半导体激光器中,像边放射激光器腔长较长,阈值电流相对较大, 而垂直腔面放射激光器腔长极短,阈值电流就特别低了。这些都不是一两句话可以说的清晰 的,它们各自的速率方程也都不同,不是一两个式子能解释的。此外谐振腔长度不同也可以 达到选模的作用,即输出激光的频率不同。进展概况简介半导体激光器又称激光二极管(LD)。进入八十年月,人们汲取了半导体物理进展的最 新成果,采纳了量子阱(QW)和应变量子阱(SL-QW)等新奇性结构,引进了折射率调制 Bragg放射器以及增加调制Bragg放射器最新技术,同时还进展了 MBE、MOCVD及CBE 等晶体生长技术新工艺,使得新的外延生长工艺能够精确地掌握晶体生长,达到原子层厚度 的精度,生长出优质量子阱以及应变量子阱材料。于是,制作出的LD,其阈值电流显著下 降,转换效率大幅度提高,输出功率成倍增长,使用寿命也明显加长。A小功率LD用于信息技术领域的小功率LD进展极快。例如用于光纤通信及光交换系统的分布反馈 (DFB)和动态单模LD、窄线宽可调谐DFB-LD、用于光盘等信息处理技术领域的可见光波 长(如波长为670nm、650nm、630nm的红光到蓝绿光)LD、量子阱面放射激光器以及超 短脉冲LD等都得到实质性进展。这些器件的进展特征是:单频窄线宽、高速率、可调谐以及短波长化和光电单片集成化等。B高功率LD1983年,波长800nm的单个LD输出功率已超过lOOmW,到了 1989年,0.1mm条宽 的LD则达到3.7W的连续输出,而1cm线阵LD已达到76W输出,转换效率达39%。1992 年,美国人又把指标提高到一个新水平:1cm线阵LD连续波输出功率达121W,转换效率 为45%。现在,输出功率为120W、1500W、3kW等诸多高功率LD均已面世。高效率、高 功率LD及其列阵的快速进展也为全固化激光器,亦即半导体激光泵浦(LDP)的固体激光 迷的迅猛进展供应了强有力的条件。 近年来,为适应EDFA和EDFL等需要,波长980nm 的大功率LD也有很大进展。最近协作光纤Bragg光栅作选频滤波,大幅度改善其输出稳定 性,泵浦效率也得到有效提高。特点及应用范围半导体二极管激光器是有用中最重要的一类激光器。它体积小、寿命长,并可采纳简洁的注 入电流的方式来泵浦其工作电压和电流与集成电路兼容,因而可与之单片集成。并且还可以 用高达GHz的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,半导体 二极管激光器在激光通信、光存储、光陀螺、激光打印、测距以及雷达等方面以及获得了广 泛的应用。进展过程综述半导体物理学的快速进展及随之而来的晶体管的创造,使科学家们早在50年月就设想创造 半导体激光器,60年月早期,很多小组竞相进行这方面的讨论。在理论分析方面,以莫斯 科列别捷夫物理讨论所的尼古拉巴索夫的工作最为杰出。早期讨论在1962年7月召开的固体器件讨论国际会议上,美国麻省理工学院林肯试验室的两名 学者克耶斯(Keyes)和奎斯特(Quist)报告了碑化钱材料的光放射现象,这引起通用电气 讨论试验室工程师哈尔(Hall)的极大爱好,在会后回家的火车上他写下了有关数据。回到 家后,哈尔马上制定了研制半导体激光器的方案,并与其他讨论人员一道,经数周奋斗,他 们的方案获得胜利。 像晶体二极管一样,半导体激光器也以材料的p-n结特性为基础, 且外观亦与前者类似,因此,半导体激光器常被称为二极管激光器或激光二极管。制造器件早期的激光二极管有很多实际限制,例如,只能在77K低温下以微秒脉冲工作,过了 8 年多时间,才由贝尔试验室和列宁格勒(现在的圣彼得堡)约飞(Ioffe)物理讨论所制造出 能在室温下工作的连续器件。而足够牢靠的半导体激光器则直到70年月中期才消失。 半 导体激光器体积特别小,最小的只有米粒那样大。工作波长依靠于激光材料,一般为0.61.55微米,由于多种应用的需要,更短波长的器件在进展中。据报导,以HIV价元素的化 合物,如ZnSe为工作物质的激光器,低温下已得到0.46微米的输出,而波长0.500.51微 米的室温连续器件输出功率已达10毫瓦以上。但迄今尚未实现商品化。 光纤通信是半 导体激光可预见的最重要的应用领域,一方面是世界范围的远距离海底光纤通信,另一方面 则是各种地区网。后者包括高速计算机网、航空电子系统、卫生通讯网、高清晰度闭路电视网等。但就目前而言,激光唱机是这类器件的最大市场。其他应用包括高速打印、自由空间 光通信、固体激光泵浦源、激光指示,及各种医疗应用等。20世纪60年月初期的半导体激光器是同质结型激光器,它是在一种材料上制作的pn结二极管在正向大电流注人下, 电子不断地向p区注人,空穴不断地向n区注人于是,在原来的pn结耗尽区内实现了载流 子分布的反转,由于电子的迁移速度比空穴的迁移速度快,在有源区发生辐射、复合,放射 出荧光,在肯定的条件下发生激光,这是一种只能以脉冲形式工作的半导体激光器.其次阶段半导体激光器进展的其次阶段是异质结构半导体激光器,它是由两种不同带隙的半导体 材料薄层,如GaAs,GaAlAs所组成,最先消失的是单异质结构激光器(1969年).单异质结 注人型激光器(SHLD)是采用异质结供应的势垒把注入电子限制在GaAsP 一 N结的P区 之内,以此来降低阀值电流密度,其数值比同质结激光器降低了一个数量级,但单异质结激 光圈仍不能在室温下连续工作.1970年,实现了激光波长为9000Å;.室温连续工作 的双异质结GaAs-GaAlAs (神化稼一稼铝碑)激光器.双异质结激光器(DHL)的诞生使可 用波段不断拓宽,线宽和调谐性能逐步提高,其结构的特点是在P型和n型材料之间生长 了仅有0. 2 Eam厚的,不掺杂的,具有较窄能隙材料的一个薄层,因此注人的载流子被限 制在该区域内(有源区),因而注人较少的电流就可以实现载流子数的反转,在半导体激光器 件中,目前比较成熟、性能较好、应用较广的是具有双异质结构的电注人式GaAs二极管激 光器.随着异质结激光器的讨论进展,人们想到假如将超薄膜( 20nm)的半导体层作 为激光器的激括层,以致于能够产生量子效应,结果会是怎么样?再加之由于MBE,MOCVD 技术的成就,于是,在1978年消失了世界上第一只半导体量子阱激光器(QWL),它大幅 度地提高了半导体激光器的各种性能.后来,又由于MOCVD,MBE生长技术的成熟,能生长 出高质量超精细薄层材料,之后,便胜利地研制出了性能更加良好的量子阱激光器,量子阱 半导体激光器与双异质结(DH)激光器相比,具有阑值电流低、输出功率高,频率响应好, 光谱线窄和温度稳定性好和较高的电光转换效率等很多优点.QWL在结构上的特点是 它的有源区是由多个或单个阱宽约为100人的势阱所组成,由于势阱宽度小于材料中电子的 德布罗意波的波长,产生了量子效应,连续的能带分裂为子能级.因此,特殊有利于载流子 的有效填充,所需要的激射阅值电流特殊低.半导体激光器的结构中应用的主要是单、多量 子阱,单量子阱(SQW)激光器的结构基本上就是把一般双异质结(DH)激光器的有源层 厚度做成数十nm以下的一种激光器,通常把势垒较厚以致于相邻势阱中电子波函数不发生 交迭的周期结构称为多量子阱(MQW).量子阱激光器单个输出功率现已大于lw,承受的功 率密度已达1 OMW/cm3以上c)而为了得到更大的输出功率,通常可以把很多单个半导体 激光器组合在一起形成半导体激光器列阵。因此,量子阱激光器当采纳阵列式集成结构时, 输出功率则可达到100w以上.近年来,高功率半导体激光器(特殊是阵列器件)飞速进展, 已经推出的产品有连续输出功率5 W,low,20w和30W的激光器阵列.脉冲工作的半导体激光 器峰值输出功率50w. 120W和1500W的阵列也已经商品化.一个4.5cmx 9cm的二维阵列, 其峰值输出功率已经超过45kW.峰值输出功率为350kW的二维阵列也已间世。进展方向从20世纪70年月末开头,半导体激光器明显向着两个方向进展,一类是以传递信息为 目的的信息型激光器.另一类是以提高光功率为目的的功率型激光器.在泵浦固体激光器等应 用的推动下,高功率半导体激光器(连续输出功率在100W以上,脉冲输出功率在5W以 上,均可称之谓高功率半导体激光器)在20世纪90年月取得了突破性进展,其标志是半导 体激光器的输出功率显著增加,国外千瓦级的高功率半导体激光器已经商品化,国内样品器 件输出已达到600W61 .假如从激光波段的被扩展的角度来看,先是红外半导体激光器,接 着是670nm红光半导体激光器大量进入应用,接着,波长为650nm,635nm的问世,蓝绿光、 蓝光半导体激光器也相继研制胜利,10mw量级的紫光乃至紫外光半导体激光器,也在加紧 研制中为适应各种应用而进展起来的半导体激光器还有可调谐半导体激光器,电子束激 励半导体激光器以及作为“集成光路”的最好光源的分布反馈激光器(DFB 一 LD),分布布喇 格反射式激光器(DBR LD)和集成双波导激光器.此外,还有高功率无铝激光器(从半 导体激光器中除去铝,以获得更高输出功率,更长寿命和更低造价的管子)、中红外半导体 激光器和量子级联激光器等等其中,可调谐半导体激光器是通过外加的电场、磁场、温度、 压力、掺杂盆等转变激光的波长,可以很便利地对输出比莫进行调制.分布反馈(DF)式半 导体激光器是伴随光纤通信和集成光学回路的进展而消失的,它于1991年研制胜利,分布 反馈式半导体激光器完全实现了单纵模运作,在相干技术领域中又开拓了巨大的应用前景它 是一种无腔行波激光器,激光振荡是由周期结构(或衍射光栅)形成光藕合供应的,不再由 解理面构成的谐振腔来供应反馈,优点是易于获得单模单频输出,简洁与纤维光缆、调制器 等耦合,特殊相宜作集成光路的光源. 单极性注入的半导体激光器是采用在导带内(或 价带内)子能级间的热电子光跃迁以实现受激光放射,自然要使导带和价带内存在子能级或 子能带,这就必需采纳量子阱结构.单极性注入激光器能获得大的光功率输出,是一种商效 率和超商速响应的半导体激光器,并对进展硅基激光器及短波激光器很有利.量子级联激光 器的创造大大简化了在中红外到远红外这样宽波长范围内产生特定波长激光的途径.它只用 同一种材料,依据层的厚度不同就能得到上述波长范围内的各种波长的激光.同传统半导体 激光器相比,这种激光器不需冷却系统,可以在室温下稳定操作,低维(量子线和量子点) 激光器的讨论进展也很快,旦£okayama的GalnAsP/Inp长波长量子线(Qw+)激光器已做 到90kCW工作条件下Im =6.A,1 =37A/cm2并有很高的量子效率.众多科研单位正在研制自组 装量子点(QD)激光器,目前该QDLD已具有了高密度,高匀称性和高放射功率.由于实际 需要,半导体激光器的进展主要是围围着降低阔值电流密度、延长工作寿命、实现室温连续 工作,以及获得单模、单频、窄线宽和进展各种不同激射波长的器件进行的.面放射器20世纪90年月消失并特殊值得一提的是面放射激光器(SEL),早在1977年,人们就 提出了所谓的面放射激光器,并于1979年做出了第一个器件,1987年做出了用光泵浦的 780nm的面放射激光器.1998年GalnAIP/GaA。面放射激光器在室温下达到亚毫安的网电流, 8mW的输出功率和11%的转换效率2)前面谈到的半导体激光器,从腔体结构上来说,不 论是F - P(法布里一泊罗)腔或是DBR (分布布拉格反射式)腔,激光输出都是在水平方 向,统称为水平腔结构.它们都是沿着衬底片的平行方向出光的.而面放射激光器却是在芯片 上下表面镀上反射膜构成了垂直方向的F P腔,光输出沿着垂直于衬底片的方向发出, 垂直腔面放射半导体激光器(VCSELS)是一种新型的量子阱激光器,它的激射阔值电流低, 输出光的方向性好,藕合效率高,通过阵列化分布能得到相当强的光功率输出,垂直腔面放 射激光器已实现了工作温度最高达71o止匕外,垂直腔面放射激光器还具有两个不稳定的 相互垂直的偏振横模输出,即x模和y模,目前对偏振开关和偏振双稳特性的讨论也进入到 了一个新阶段,人们可以通过转变光反馈、光电反馈、光注入、注入电流等等因素实现对偏 振态的掌握,在光开关和光规律器件领域获得新的进展。20世纪90年月末,面放射激光器 和垂直腔面放射激光器得到了快速的进展,且已考虑了在超并行光电子学中的多种应 用.980mn,850nm和780nm的器件在光学系统中已经有用化.目前,垂直腔面放射激光器已用 于千兆位以太网的高速网络。为了满意21世纪信息传输宽带化、信息处理高速化、信息存 储大容量以及军用装备小型、高精度化等需要,半导体激光器的进展趋势主要在高速宽带LD、大功率ID,短波长LD,盆子线和量子点激光器、中红外LD等方面.目前,在这些方 面取得了一系列重大的成果.应用状况应用介绍半导体激光器是成熟较早、进展较快的一类激光器,由于它的波长范围宽,制作简洁、 成本低、易于大量生产,并且由于体积小、重量轻、寿命长,因此,品种进展快,应用范围 广,目前已超过300种,半导体激光器的最主要应用领域是Gb局域网,850nm波长的半导 体激光器适用于)IGh/。局域网,1300nm -1550nm波长的半导体激光器适用于lOGb局域 网系统,半导体激光器的应用范围掩盖了整个光电子学领域,已成为当今光电子科学的核心 技术,半导体激光器在激光测距、激光雷达、激光通信、激光模拟武器、激光警戒、激光制 跟踪、引燃引爆、自动掌握、检测仪器等方面获得了广泛的应用,形成了宽阔的市场。1978 年,半导体激光器开头应用于光纤通信系统,半导体激光器可以作为光纤通信的光源和指示 器以及通过大规模集成电路平面工艺组成光电子系统.由于半导体激光器有着超小型、高效 率和高速工作的优异特点,所以这类器件的进展,一开头就和光通信技术紧密结合在一起, 它在光通信、光变换、光互连、并行光波系统、光信息处理和光存贮、光计算机外部设施的 光祸合等方面有重要用途.半导体激光器的问世极大地推动了信息光曳工技走的进展,到如 今,它是当前光通信领域中进展最快、最为重要的激光光纤通信的重要光源.半导体激光器 再加上低损耗光纤,对光纤通信产生了重大影响,并加速了它的进展因此可以说,没有半 导体激光器的消失,就没有当今的光通信.GaAs/GaAlA。双异质结激光器是光纤通信和大气 通信的重要光源,如今,凡是长距离、大容量的光信息传输系统无不都采纳分布反馈式半导 体激光器(DFB LD).半导体激光器也广泛地应用于光盘技术中,光盘技术是集计算技术、 邀光技龙和数字通信技术于一体的综合性技术.是大容t.高密度、快速有效和低成本的信息存 储手段,它需要半导体激光器产生的光束将信息写人和读出.常用器件下面我们详细来看看几种常用的半导体激光器的应用:量子阱半导体大功率激光器在精密机械零件的激光加工方面有重要应用,同时也成为固体激光器最抱负的、高效率泵浦 光源.由于它的高效率、高可*性和小型化的优点,导致了固体激光器的不断更新.在印刷业和医学领域,高功率半导体激光器也有应用.此外,如长波长激光器(1976年,人们用 GanAsP/InP实现了长波长激光器)用于光通信,短波长激光器用于光盘读出,自从NaKamuxa 实现了 GalnN/GaN蓝光激光器,可见光半导体激光器在光盘系统中得到了广泛应用,如CD 播放器,DVD系统和高密度光存储器可见光面放射激光器在光盘、打印机、显示器中都有 着很重要的应用,特殊是红光、绿光和蓝光面放射激光器的应用更广泛.蓝绿光半导体激光 器用于水下通信、激光打印、高密度信息读写、深水探测及应用于大屏幕彩色显示和高清晰 度彩色电视机中.总之,可见光半导体激光器在用作彩色显示器光源、光存贮的读出和写人, 激光打印、激光印刷、高密度光盘存储系统、条码读出器以及固体激光器的泵浦源等方面有 着广泛的用途.量子级联激光的新型激光器应用于环境检测和医检领域.此外,由于半导体激 光器可以通过转变磁场或调整电流实现波长调谐,且已经可以获得线宽很窄的激光输出,因 此采用半导体激光器可以进行高辨别光谱讨论.可调谐激光器是深化讨论物质结构而快速进 展的激光光谱学的重要工具大功率中红外(3.51m)LD在红外对抗、红外照明、激光雷达、 大气窗口、自由空间通信、大气监视和化学光谱学等方面有广泛的应用.绿光到紫外光的垂直腔面放射器在光电子学中得到了广泛的应用,如超高密度、光存储.近场光学方案被 认为是实现高密度光存储的重要手段,垂直腔面放射激光器还可用在全色平板显示、大面积 放射、照明、光信号、光装饰、紫外光刻、激光加工和医疗等方面12)、如前所述,半导体 激光器自20世纪80年月初以来,由于取得了 DFB动态单纵模激光器的研制胜利和有用化, 量子阱和应变层量子阱激光器的消失,大功率激光器及其列阵的进展,可见光激光器的研制 胜利,面放射激光器的实现、单极性注人半导体激光器的研制等等一系列的重大突破,半导 体激光器的应用越来越广泛,半导体激光器已成为激光产业的主要组成部分,目前已成为各 国进展信息、通信、家电产业及军堇装备不行缺少的重要基础器件. 半导体激光器在生 导体激光打标机中的应用: 半导体激光器因其使用寿命长、激光采用效率高、热能量比 YAG激光器小、体积小、性价比高、用电省等一系列优势而成为2022年热卖产品,e网激 光生产的国产半导体激光器的消失,加速了以半导体激光器为主要耗材的半导体激光机取代 YAG激光打标机市场份额的步伐。其他资料朗讯科技公司下属研发机构贝尔试验室的科学家们近日胜利研制出世界上首款 能够在红外波长光谱范围内持续可*地放射光的新型半导体激光器。新设施克服了原有宽带 激光放射过程中存在的缺陷,在先进光纤通信和感光化学探测器等领域有着宽阔的潜在应 用。相关的制造技术可望成为将来用于光纤的高性能半导体激光器的基础。 -有关新 激光器性质的论文刊登2002年2月21日出版的自然杂志上。文章主要作者、贝尔试验 室物理学家Claire Gmachl断言:“超宽带半导体激光器可用来制造高度敏感的万用探测器, 以探测大气中的微小污染痕迹,还可用于制造诸如呼吸分析仪等新的医疗诊断工具。” -半导体激光器是一种特别便利的光源,具备紧凑、耐用、便携和强大等特点。然而,典 型半导体激光器通常为窄带设施,只能以特有波长发出单色光。相比之下,超宽带激光器具 有显著的优势,可以同时在更宽的光谱范围内选取波长。制造出可在范围广泛的操作环境下 可*运行的超宽带激光器正是科学家们长期以来追求的一个目标。 -为了研制出新型的 激光器,贝尔试验室科学家们采纳了 650余种光壬宝中使用的标准半导体材料,并将其叠放 在一起组成一个“多层三明治,这些层面共分为36组,其中不同层面组在感光属性方面有 着微小的差别,并在特有的短波长范围内生成光,同时与其他各组之间保持透亮 .全 部这些层面组结合在一起,就能放射出宽带激光。 -新型激光器隶属于一种称为量子 瀑布(QC)激光器的高性能半导体激光器。QC激光器由Federico Capasso和AlfredCho及 其同事于1994年在贝尔试验室创造,其操作过程特别类似于一道电子瀑布。当电流通过激 光器时,电子瀑布将沿着能量阶梯奔流而下;每当其撞击一级阶梯时,就会放射出红外光子。 这些红外光子在包含电子瀑布的半导体共振器内前后反射,从而激发出其他光子。这一放大 过程将产生出很高的输出能量。 超宽带激光器可在68微米红外波长范围产生L3 瓦的峰值能量。Gmachl指出:”从理论上讲,波长范围可以更宽或更窄。选择68微米范围 波长放射激光,目的是更令人信服地演示我们的想法。将来,我们可以依据诸如光纤应用等 详细应用的特定需求量身定制激光器。”常用参数半导体激光器的常用参数可分为:波长、阈值电流1th、工作电流lop、垂直发散角0_L、 水平发散角0、监控电流Im。 (1)波长:即激光管工作波长,目前可作光电开关用 的激光管波长有 635nm、650nm> 670nm、激光二极管 690nm、780nm、810nm、860nm> 980nm 等。 (2)阈值电流Ith :即激光管开头产生激光振荡的电流,对一般小功率激光管而 言,其值约在数十毫安,具有应变多量子阱结构的激光管阈值电流可低至10mA以下。(3)工作电流lop :即激光管达到额定输出功率时的驱动电流,此值对于设计调试激光驱 动电路较重要。(4)垂直发散角0,:激光二极管的发光带在垂直PN结方向张开的角度,一般在15°40。左右。(5)水平发散角。:激光二极管的发光带在与PN结平行方向所张开的角度,一般在6°10°左右。(6)监控电流Im :即激光管在额定输出功率时,在PIN管上流过的电流。 激光二极管在计算机上的光盘驱动器,激光打印机中 的打印头,条形码扫描仪,激光测距、激光医疗,光通讯,激光指示等小功率光电设施中得 到了广泛的应用,在舞台灯光、激光手术、激光焊接和激光武器等大功率设施中也得到了应 用。工业半导体激光器工业激光设施上用的半导体激光器一般为1064nm、532nm> 808nm,功率从几瓦到几 千瓦不等。一般在激光打标机上使用的是1064nm的,而532nm的则是绿激光。