八年级上册知识点总结_小学教育-小学考试.pdf
学习好资料 欢迎下载 北师大版数学(八年级上册)知识点总结 第一章 勾股定理 1、勾股定理 直角三角形两直角边 a,b 的平方和等于斜边 c 的平方,即222cba 2、勾股定理的逆定理 如果三角形的三边长 a,b,c 有关系222cba,那么这个三角形是直角三角形。3、勾股数:满足222cba的三个正整数,称为勾股数。第二章 实数 一、实数的概念及分类 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数 无理数 无限不循环小数 负无理数 2、无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率 ,或化简后含有 的数,如3+8 等;(3)有特定结构的数,如 0.1010010001等;(4)某些三角函数值,如 sin60o等 二、实数的倒数、相反数和绝对值 1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有 a+b=0,a=b,反之亦成立。2、绝对值 在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则 a 0;若|a|=-a,则 a 0。3、倒数 如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。倒数等于本身的数是 1 和-1。零没有倒数。4、数轴 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。学习好资料 欢迎下载 解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。5、估算 三、平方根、算数平方根和立方根 1、算术平方根:一般地,如果一个正数 x 的平方等于 a,即 x2=a,那么这个正数 x 就叫做 a 的算术平方根。特别地,0 的算术平方根是 0。表示方法:记作“a”,读作根号 a。性质:正数和零的算术平方根都只有一个,零的算术平方根是零。2、平方根:一般地,如果一个数 x 的平方等于 a,即 x2=a,那么这个数 x 就叫做 a 的平方根(或二次方根)。表示方法:正数 a 的平方根记做“a”,读作“正、负根号 a”。性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数 a 的平方根的运算,叫做开平方。0a 注意a的双重非负性:a0 3、立方根 一般地,如果一个数 x 的立方等于 a,即 x3=a 那么这个数 x 就叫做 a 的立方根(或三次方根)。表示方法:记作3a 性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:33aa,这说明三次根号内的负号可以移到根号外面。四、实数大小的比较 1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设 a、b 是实数,,0baba,0baba baba0(3)求商比较法:设 a、b 是两正实数,;1;1;1babababababa(4)绝对值比较法:设 a、b 是两负实数,则baba。(5)平方法:设 a、b 是两负实数,则baba22。等于斜边的平方即勾股定理的逆定理如果三角形的三边长有关系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数第二章实数一实数的概念及分类实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数一时之归纳起来有四类开方开不尽的数如等有特定意义的数如圆周率或化简后含有的数如等有特定结构的数如等某些三角函数值如等二实数的倒数相数和绝对值相数实数与它的相数时一对数只有符号不同的两个数叫做互为相数零的个数所对应的点与原点的距离叫做该数的绝对值零的绝对值是它本身也可看成它的相数若则若则倒数如果与互为倒数则有之亦成立倒数等于本身的数是和零没有倒数数轴规定了原点正方向和单位长度的直线叫做数轴画数轴时要注意学习好资料 欢迎下载 五、算术平方根有关计算(二次根式)1、含有二次根号“”;被开方数 a 必须是非负数。2、性质:(1))0()(2 aaa )0(aa(2)aa2 )0(aa(3))0,0(babaab()0,0(baabba)(4))0,0(bababa ()0,0(bababa)3、运算结果若含有“a”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式 六、实数的运算 (1)六种运算:加、减、乘、除、乘方 、开方(2)实数的运算顺序 先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。(3)运算律 加法交换律 abba 加法结合律 )()(cbacba 乘法交换律 baab 乘法结合律 )()(bcacab 乘法对加法的分配律 acabcba)(第三章 图形的平移与旋转 一、平移 1、定义 在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。2、性质 平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。二、旋转 1、定义 在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋等于斜边的平方即勾股定理的逆定理如果三角形的三边长有关系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数第二章实数一实数的概念及分类实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数一时之归纳起来有四类开方开不尽的数如等有特定意义的数如圆周率或化简后含有的数如等有特定结构的数如等某些三角函数值如等二实数的倒数相数和绝对值相数实数与它的相数时一对数只有符号不同的两个数叫做互为相数零的个数所对应的点与原点的距离叫做该数的绝对值零的绝对值是它本身也可看成它的相数若则若则倒数如果与互为倒数则有之亦成立倒数等于本身的数是和零没有倒数数轴规定了原点正方向和单位长度的直线叫做数轴画数轴时要注意学习好资料 欢迎下载 转,这个定点称为旋转中心,转动的角叫做旋转角。2、性质 旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。第四章 第五章 位置的确定 一、在平面内,确定物体的位置一般需要两个数据。二、平面直角坐标系及有关概念 1、平面直角坐标系 在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做 x 轴或横轴,取向右为正方向;铅直的数轴叫做 y 轴或纵轴,取向上为正方向;x轴和 y 轴统称坐标轴。它们的公共原点 O 称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。2、为了便于描述坐标平面内点的位置,把坐标平面被 x 轴和 y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x 轴和 y 轴上的点(坐标轴上的点),不属于任何一个象限。3、点的坐标的概念 对于平面内任意一点 P,过点 P 分别 x 轴、y 轴向作垂线,垂足在上 x 轴、y 轴对应的数a,b 分别叫做点 P 的横坐标、纵坐标,有序数对(a,b)叫做点 P 的坐标。点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当ba 时,(a,b)和(b,a)是两个不同点的坐标。平面内点的与有序实数对是一一对应的。4、不同位置的点的坐标的特征 (1)、各象限内点的坐标的特征 点 P(x,y)在第一象限0,0yx 点 P(x,y)在第二象限0,0yx 点 P(x,y)在第三象限0,0yx 点 P(x,y)在第四象限0,0yx(2)、坐标轴上的点的特征 点 P(x,y)在 x 轴上0 y,x 为任意实数 点 P(x,y)在 y 轴上0 x,y 为任意实数 点 P(x,y)既在 x 轴上,又在 y 轴上x,y 同时为零,即点 P 坐标为(0,0)即原点(3)、两条坐标轴夹角平分线上点的坐标的特征 等于斜边的平方即勾股定理的逆定理如果三角形的三边长有关系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数第二章实数一实数的概念及分类实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数一时之归纳起来有四类开方开不尽的数如等有特定意义的数如圆周率或化简后含有的数如等有特定结构的数如等某些三角函数值如等二实数的倒数相数和绝对值相数实数与它的相数时一对数只有符号不同的两个数叫做互为相数零的个数所对应的点与原点的距离叫做该数的绝对值零的绝对值是它本身也可看成它的相数若则若则倒数如果与互为倒数则有之亦成立倒数等于本身的数是和零没有倒数数轴规定了原点正方向和单位长度的直线叫做数轴画数轴时要注意学习好资料 欢迎下载 点 P(x,y)在第一、三象限夹角平分线(直线 y=x)上x 与 y 相等 点 P(x,y)在第二、四象限夹角平分线上x 与 y 互为相反数(4)、和坐标轴平行的直线上点的坐标的特征 位于平行于 x 轴的直线上的各点的纵坐标相同。位于平行于 y 轴的直线上的各点的横坐标相同。(5)、关于 x 轴、y 轴或原点对称的点的坐标的特征 点 P 与点 p 关于 x 轴对称横坐标相等,纵坐标互为相反数,即点 P(x,y)关于 x轴的对称点为 P(x,-y)点 P 与点 p 关于 y 轴对称纵坐标相等,横坐标互为相反数,即点 P(x,y)关于 y轴的对称点为 P(-x,y)点 P 与点 p 关于原点对称横、纵坐标均互为相反数,即点 P(x,y)关于原点的对称点为 P(-x,-y)(6)、点到坐标轴及原点的距离 点 P(x,y)到坐标轴及原点的距离:(1)点 P(x,y)到 x 轴的距离等于y(2)点 P(x,y)到 y 轴的距离等于x(3)点 P(x,y)到原点的距离等于22yx 三、坐标变化与图形变化的规律:坐标(x,y)的变化 图形的变化 x a或 y a 被横向或纵向拉长(压缩)为原来的 a 倍 x a,y a 放大(缩小)为原来的 a 倍 x(-1)或 y(-1)关于 y 轴或 x 轴对称 x(-1),y(-1)关于原点成中心对称 x+a 或 y+a 沿 x 轴或 y 轴平移 a 个单位 x+a,y+a 沿 x 轴平移 a 个单位,再沿 y 轴平移 a 个单 第六章 一次函数 一、函数:一般地,在某一变化过程中有两个变量 x 与 y,如果给定一个 x 值,相应地就确定了一个 y 值,那么我们称 y 是 x 的函数,其中 x 是自变量,y 是因变量。二、自变量取值范围 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为 0)、二次根式(被开方数为非负数)、实际意义几方面考虑。三、函数的三种表示法及其优缺点(1)关系式(解析)法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,等于斜边的平方即勾股定理的逆定理如果三角形的三边长有关系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数第二章实数一实数的概念及分类实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数一时之归纳起来有四类开方开不尽的数如等有特定意义的数如圆周率或化简后含有的数如等有特定结构的数如等某些三角函数值如等二实数的倒数相数和绝对值相数实数与它的相数时一对数只有符号不同的两个数叫做互为相数零的个数所对应的点与原点的距离叫做该数的绝对值零的绝对值是它本身也可看成它的相数若则若则倒数如果与互为倒数则有之亦成立倒数等于本身的数是和零没有倒数数轴规定了原点正方向和单位长度的直线叫做数轴画数轴时要注意学习好资料 欢迎下载 这种表示法叫做关系式(解析)法。(2)列表法 把自变量 x 的一系列值和函数 y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图象法 用图象表示函数关系的方法叫做图象法。四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。五、正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,若两个变量 x,y 间的关系可以表示成bkxy(k,b 为常数,k0)的形式,则称 y 是 x 的一次函数(x 为自变量,y 为因变量)。特别地,当一次函数bkxy中的b=0 时(即kxy)(k 为常数,k0),称 y 是 x的正比例函数。2、一次函数的图像:所有一次函数的图像都是一条直线 3、一次函数、正比例函数图像的主要特征:一次函数bkxy的图像是经过点(0,b)的直线;正比例函数kxy 的图像是经过原点(0,0)的直线。k 的符号 b的符号 函数图像 图像特征 k0 b0 y 0 x 图像经过一、二、三象限,y随 x 的增大而增大。b0 y 0 x 图像经过一、三、四象限,y随 x 的增大而增大。K0 y 图像经过一、二、四象限,y随 x 的增大而减小 等于斜边的平方即勾股定理的逆定理如果三角形的三边长有关系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数第二章实数一实数的概念及分类实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数一时之归纳起来有四类开方开不尽的数如等有特定意义的数如圆周率或化简后含有的数如等有特定结构的数如等某些三角函数值如等二实数的倒数相数和绝对值相数实数与它的相数时一对数只有符号不同的两个数叫做互为相数零的个数所对应的点与原点的距离叫做该数的绝对值零的绝对值是它本身也可看成它的相数若则若则倒数如果与互为倒数则有之亦成立倒数等于本身的数是和零没有倒数数轴规定了原点正方向和单位长度的直线叫做数轴画数轴时要注意学习好资料 欢迎下载 0 x b0 时,图像经过第一、三象限,y 随 x 的增大而增大;(2)当 k0 时,y 随 x 的增大而增大(2)当 k0 时,y 随 x 的增大而减小 6、正比例函数和一次函数解析式的确定 确定一个正比例函数,就是要确定正比例函数定义式kxy(k0)中的常数 k。确定一个一次函数,需要确定一次函数定义式bkxy(k0)中的常数 k 和 b。解这类问题的一般方法是待定系数法。7、一次函数与一元一次方程的关系:任何一个一元一次方程都可转化为:kx+b=0(k、b 为常数,k0)的形式 而一次函数解析式形式正是 y=kx+b(k、b 为常数,k0)当函数值为 0 时,即 kx+b=0 就与一元一次方程完全相同 结论:由于任何一元一次方程都可转化为 kx+b=0(k、b 为常数,k0)的形式所以解一元一次方程可以转化为:当一次函数值为 0 时,求相应的自变量的值 从图象上看,这相当于已知直线 y=kx+b 确定它与 x 轴交点的横坐标值 第七章 二元一次方程组 1、二元一次方程 含有两个未知数,并且所含未知数的项的次数都是 1 的整式方程叫做二元一次方程。等于斜边的平方即勾股定理的逆定理如果三角形的三边长有关系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数第二章实数一实数的概念及分类实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数一时之归纳起来有四类开方开不尽的数如等有特定意义的数如圆周率或化简后含有的数如等有特定结构的数如等某些三角函数值如等二实数的倒数相数和绝对值相数实数与它的相数时一对数只有符号不同的两个数叫做互为相数零的个数所对应的点与原点的距离叫做该数的绝对值零的绝对值是它本身也可看成它的相数若则若则倒数如果与互为倒数则有之亦成立倒数等于本身的数是和零没有倒数数轴规定了原点正方向和单位长度的直线叫做数轴画数轴时要注意学习好资料 欢迎下载 2、二元一次方程的解 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。3、二元一次方程组 含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。4 二元一次方程组的解 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。5、二元一次方程组的解法(1)代入(消元)法(2)加减(消元)法 6、一次函数与二元一次方程(组)的关系:(1)一次函数与二元一次方程的关系:直线 y=kx+b 上任意一点的坐标都是它所对应的二元一次方程 kx-y+b=0 的解(2)一次函数与二元一次方程组的关系:二元一次方程组 的解可看作两个一次函数 和 的图象的交点。当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。第八章 数据的代表 1、刻画数据的集中趋势(平均水平)的量:平均数、众数、中位数 2、平均数(1)平均数:一般地,对于 n 个数,21nxxx我们把)(121nxxxn叫做这 n个数的算术平均数,简称平均数,记为x。(2)加权平均数:3、众数 一组数据中出现次数最多的那个数据叫做这组数据的众数。4、中位数 一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。222111cybxacybxa11111bcxbay22122bcxbay等于斜边的平方即勾股定理的逆定理如果三角形的三边长有关系那么这个三角形是直角三角形勾股数满足的三个正整数称为勾股数第二章实数一实数的概念及分类实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数一时之归纳起来有四类开方开不尽的数如等有特定意义的数如圆周率或化简后含有的数如等有特定结构的数如等某些三角函数值如等二实数的倒数相数和绝对值相数实数与它的相数时一对数只有符号不同的两个数叫做互为相数零的个数所对应的点与原点的距离叫做该数的绝对值零的绝对值是它本身也可看成它的相数若则若则倒数如果与互为倒数则有之亦成立倒数等于本身的数是和零没有倒数数轴规定了原点正方向和单位长度的直线叫做数轴画数轴时要注意