七年级数学上册数学教案(3篇).docx
七年级数学上册数学教案(3篇) a. 单独的一个数或一个字母也是代数式 b. 任何有理数的肯定值都是正数 c. 假如两个数的肯定值相等,那么这两个数相等 d. 数轴上的任意一个点都可以表示一个有理数 【答案】a 【解析】解:数轴上的点可表示为有理数和无理数。 两个数的肯定值相等,这两个数相等或者互为相反数。 肯定值是( ) 。 2、以下说法正确是() a不存在最小的实数 b有理数是有限小数 c无限小数都是无理数 d带根号的数都是无理数 </span七年级数学上册数学教案篇二 1.(2023安徽模拟)把几个数用大括号围起来,中间用逗号断开,如:1,2,3、2,7,8,19,我们称之为集合,其中的数称其为集合的元素.假如一个集合满意:当实数a是集合的元素时,实数8a也必是这个集合的元素,这样的集合我们称为好的集合.以下集合为好的集合的是( ) a. 1,2 b. 1,4,7 c. 1,7,8 d. 2,6 答案:b 学问点:实数. 解析:依据题意,利用集合中的数,进一步计算8a的值即可. 解:a、1,2不是好的集合,由于81=7,不是集合中的数,故错误; b、1,4,7是好的集合,这是由于87=1,84=4,81=7,1、4、7都是1、4、7中的数,正确; c、1,7,8不是好的集合,由于88=0,不是集合中的数,故错误; d、2,6不是好的集合,由于8(2)=10,不是集合中的数,故错误; 应选:b. 此题考察了有理数的加减的应用,要读懂题意,依据有理数的减法根据题中给出的推断条件进展求解即可. 七年级数学上册数学教案篇三 【学问与技能】 1.了解无理数和实数的概念,会将实数按肯定的标准进展分类. 2.知道实数与数轴上的点一一对应. 【过程与方法】 1.了解无理数和实数的概念,适时拓展数的观念. 2.通过学习“实数与数轴上的点的一一对应关系”,渗透“数形结合”思想. 【情感态度】 从分类、集合的思想中领悟数学的内涵,激发兴趣. 【教学重点】 正确理解实数的概念. 【教学难点】 对“实数与数轴上的点一一对应关系”的理解. 一、情境导入,初步熟悉 问题 请学生回忆有理数的分类,及与有理数相关的概念等.教师引导得出以下结论:任何一个有理数都可以写成有限小数或无限循环小数的形式,如等. 引导学生反向探讨:任何一个有限小数或无限循环小数都能化成分数吗? 【教学说明】任何一个有限小数和一个无限循环小数都可以化成分数,所以任何一个有限小数和一个无限循环小数都是有理数. 二、思索探究,猎取新知 例1 (1)试着写出几个无理数. (2)推断以下各数中,哪些是有理数?哪些是无理数?