湖南省长沙市广益中学2022-2023学年数学九年级第一学期期末调研模拟试题含解析.doc
2022-2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1如图,在ABC中,AB=5,AC=3,BC=4,将ABC绕A逆时针方向旋转40°得到ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A6BC3D+2如图,在平面直角坐标系中,的顶点在第一象限,点在轴的正半轴上,将绕点逆时针旋转,点的对应点的坐标是( )ABCD3四条线段成比例,其中3,则等于( )A2BCD84在直角三角形ABC中,已知C=90°,A=40°,BC=3,则AC=( )A B C D5由于受猪瘟的影响,今年9月份猪肉的价格两次大幅上涨,瘦肉价格由原来每千克元,连续两次上涨后,售价上升到每千克元,则下列方程中正确的是( )ABCD6如图,AB是半圆O的直径,BAC40°,则D的度数为( )A140°B135°C130°D125°7九章算术中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有人,买鸡的钱数为,依题意可列方程组为( )ABCD8如图,点I是ABC的内心,BIC130°,则BAC()A60°B65°C70°D80°9如图,在矩形ABCD中,BC=2,AEBD,垂足为E,BAE=30°,那么ECD的面积是( )A2BCD10如图,AB,BC是O的两条弦,AOBC,垂足为D,若O的半径为5,BC8,则AB的长为()A8B10CD11已知关于的方程(1)(2)(3)(4),其中一元二次方程的个数为( )个A1B2C3D412为了宣传垃圾分类,童威写了一篇倡议书,决定用微博转发的方式传播他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发,每个好友转发之后,又邀请n个互不相同的好友转发,依次类推已知经过两轮转发后,共有111个人参与了宣传活动,则n的值为( )A9B10C11D12二、填空题(每题4分,共24分)13如图,点是矩形中边上一点,将沿折叠为,点落在边上,若,则_14如图,D在矩形ABCD中,AB=4,BC=6,E是边AD一个动点,将ABE沿BE对折成BEF,则线段DF长的最小值为_15白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_个飞机场16抛物线的顶点坐标为_.17若是方程的一个根,则代数式的值是_.18如图,在矩形中,是边的中点,连接交对角线于点,若,则的长为_三、解答题(共78分)19(8分)在平面直角坐标系中,二次函数y=ax2+2nx+c的图象过坐标原点.(1)若a=-1.当函数自变量的取值范围是-1x2,且n2时,该函数的最大值是8,求n的值;当函数自变量的取值范围是时,设函数图象在变化过程中最高点的纵坐标为m,求m与n的函数关系式,并写出n的取值范围;(2)若二次函数的图象还过点A(-2,0),横、纵坐标都是整数的点叫做整点.已知点,二次函数图象与直线AB围城的区域(不含边界)为T,若区域T内恰有两个整点,直接写出a的取值范围.20(8分)我们规定:方程的变形方程为例如:方程的变形方程为(1)直接写出方程的变形方程;(2)若方程的变形方程有两个不相等的实数根,求的取值范围;(3)若方程的变形方程为,直接写出的值21(8分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD在路灯光下的影长分别为BM、DN,在图中作出EF的影长22(10分)如图,已知菱形ABCD,对角线AC、BD相交于点O,AC6,BD1点E是AB边上一点,求作矩形EFGH,使得点F、G、H分别落在边BC、CD、AD上设 AEm(1)如图,当m1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)(2)写出矩形EFGH的个数及对应的m的取值范围23(10分)若边长为6的正方形ABCD绕点A顺时针旋转,得正方形ABCD,记旋转角为a(I)如图1,当a60°时,求点C经过的弧的长度和线段AC扫过的扇形面积;()如图2,当a45°时,BC与DC的交点为E,求线段DE的长度;()如图3,在旋转过程中,若F为线段CB的中点,求线段DF长度的取值范围24(10分)如图,在平面直角坐标系xOy中,A(2,0),B(0,3),C(4,1)以原点O为旋转中心,将ABC顺时针旋转90°得到A'B'C',其中点A,B,C旋转后的对应点分别为点A',B',C'(1)画出A'B'C',并写出点A',B',C'的坐标;(2)求经过点B',B,A三点的抛物线对应的函数解析式25(12分)甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率26如图,点都在上,请仅用无刻度的直尺分别按下列要求画图. (不写作法,保留作图痕迹)(1)在图1中,若,画一个的内接等腰直角三角形. (2)在图2中,若点在弦上,且,画一个的内接等腰直角三角形.参考答案一、选择题(每题4分,共48分)1、B【解析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到AED的面积=ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可【详解】解:AB=5,AC=3,BC=4,ABC为直角三角形,由题意得,AED的面积=ABC的面积,由图形可知,阴影部分的面积=AED的面积+扇形ADB的面积ABC的面积,阴影部分的面积=扇形ADB的面积=,故选B【点睛】考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键2、D【分析】过点作x轴的垂线,垂足为M,通过条件求出,MO的长即可得到的坐标.【详解】解:过点作x轴的垂线,垂足为M,在直角中, ,OM=2+1=3,的坐标为.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题3、A【分析】四条线段a,b,c,d成比例,则 = ,代入即可求得b的值【详解】解:四条线段a,b,c,d成比例, =,b= = =2(cm)故选A【点睛】本题考查成比例线段,解题关键是正确理解四条线段a,b,c,d成比例的定义4、D【解析】试题分析:C=90°,A=40°,B=50°.BC=3,.故选D.考点:1.直角三角形两锐角的关系;2.锐角三角函数定义.5、A【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),先表示出第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于a%的方程【详解】解:当猪肉第一次提价时,其售价为;当猪肉第二次提价后,其售价为故选:.【点睛】本题考查了求平均变化率的方法若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b6、C【分析】根据圆周角定理可知,再由三角形的内角和可得,最后根据圆内接四边形的性质即可得.【详解】 AB是半圆O的直径(圆周角定理)(圆内接四边形的对角互补)故选:C.【点睛】本题考查了圆周角定理、三角形的内角和定理、圆内接四边形的性质,掌握灵活运用各定理和性质是解题关键.7、D【分析】一方面买鸡的钱数=8人出的总钱数3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有人,买鸡的钱数为,根据题意,得:.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.8、D【分析】根据三角形的内接圆得到ABC=2IBC,ACB=2ICB,根据三角形的内角和定理求出IBC+ICB,求出ACB+ABC的度数即可;【详解】解:点I是ABC的内心,ABC2IBC,ACB2ICB,BIC130°,IBC+ICB180°CIB50°,ABC+ACB2×50°100°,BAC180°(ACB+ABC)80°故选D【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.9、D【分析】根据已知条件,先求RtAED的面积,再证明ECD的面积与它相等【详解】如图:过点C作CFBD于F.矩形ABCD中,BC=2,AEBD,BAE=30°.ABE=CDF=60°,AB=CD,AD=BC=2,AEB=CFD=90°,AED=30°,ABECDF.AE=CF.SAED=ED×AE,SECD=ED×CF.SAED=SCDEAE=1,DE=,ECD的面积是.故答案选:D.【点睛】本题考查了矩形的性质与含30度角的直角三角形相关知识,解题的关键是熟练的掌握矩形的性质与含30度角的直角三角形并能运用其知识解题.10、D【分析】根据垂径定理求出BD,根据勾股定理求出OD,求出AD,再根据勾股定理求出AB即可【详解】解:AOBC,AO过O,BC8,BDCD4,BDO90°,由勾股定理得:OD,ADOAOD538,在RtADB中,由勾股定理得:AB,故选D【点睛】本题考查了垂径定理和勾股定理,能根据垂径定理求出BD长是解此题的关键11、C【分析】根据一元二次方程的定义逐项判断即可【详解】解:(1)ax2+x+1=0中a可能为0,故不是一元二次方程;(2)符合一元二次方程的定义,故是一元二次方程;(3),去括号合并后为,是一元二次方程;(4)x2=0,符合一元二次方程的定义,是一元二次方程;所以是一元二次方程的有三个,故选:C【点睛】本题主要考查一元二次方程的定义,即只含有一个未知数且未知数的次数为2的整式方程,注意如果是字母系数的方程必须满足二次项的系数不等于0才可以12、B【分析】设邀请了n个好友转发倡议书,第一轮传播了n个人,第二轮传播了n2个人,根据两轮传播共有111人参与列出方程求解即可【详解】由题意,得n+n2+1=111,解得:n1=-11(舍去),n2=10,故选B【点睛】本题考查了列一元二次方程解实际问题的运用,解答时先由条件表示出第一轮增加的人数和第二轮增加的人数根据两轮总人数为111人建立方程是关键二、填空题(每题4分,共24分)13、5【分析】由矩形的性质可得AB=CD=8,AD=BC=10,A=D=90°,由折叠的性质可求BF=BC=10,EF=CE,由勾股定理可求AF的长,CE的长【详解】解:四边形ABCD是矩形AB=CD=8,AD=BC=10,A=D=90°,将BCE沿BE折叠为BFE,在RtABF中,AF=6DF=AD-AF=4在RtDEF中,DF2+DE2=EF2=CE2,16+(8-CE)2=CE2,CE=5故答案为:5【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,灵活运用这些性质进行推理是本题的关键14、【分析】连接DF、BD,根据DFBDBF可知当点F落在BD上时,DF取得最小值,且最小值为BDBF的长,然后根据矩形的折叠性质进一步求解即可.【详解】如图,连接DF、BD,由图可知,DFBDBF,当点F落在BD上时,DF取得最小值,且最小值为BDBF的长,四边形ABCD是矩形,AB=CD=4、BC=6,BD=,由折叠性质知AB=BF=4,线段DF长度的最小值为BDBF=,故答案为:.【点睛】本题主要考查了矩形的折叠的性质,熟练掌握相关概念是解题关键.15、1【分析】设共有x个飞机场,每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线等量关系为:,把相关数值代入求正数解即可【详解】设共有x个飞机场,解得 , (不合题意,舍去),故答案为:1【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键16、(-1,0)【分析】根据二次函数的性质,由顶点式直接得出顶点坐标即可【详解】解:抛物线,顶点坐标为:(-1,0),故答案是:(-1,0)【点睛】本题主要考查了二次函数的性质,根据顶点式得出顶点坐标是考查重点,同学们应熟练掌握17、9【分析】根据方程解的定义,将a代入方程得到含a的等式,将其变形,整体代入所求的代数式.【详解】解:a是方程的一个根,2a2=a+3,2a2-a=3,.故答案为:9.【点睛】本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键.18、 【解析】分析:根据勾股定理求出,根据,得到,即可求出的长.详解:四边形是矩形,在中,是中点,故答案为.点睛:考查矩形的性质,勾股定理,相似三角形的性质及判定,熟练掌握相似三角形的判定方法和性质是解题的关键.三、解答题(共78分)19、 (1) n=1; (2)【分析】(1)根据已知条件可确定抛物线图象的基本特征,从而列出关于的方程,即可得解;根据二次函数图象的性质分三种情况进行分类讨论,从而得到与的分段函数关系;(2)由得正负进行分类讨论,结合已知条件求得的取值范围【详解】解:(1) 抛物线过坐标原点c=0,a=-1y=-x2+2nx抛物线的对称轴为直线x=n,且n2,抛物线开口向下当-1x2时,y随x的增大而增大当x=2时,函数的最大值为8-4+4n=8n=1若则抛物线开口向下,在对称轴右侧,随的增大而减小当时,函数值最大,;若则此时,抛物线的顶点为最高点;若则抛物线开口向下,在对称轴左侧,随的增大而增大当时,函数值最大,综上所述:(2)结论:或证明:过若,直线的解析式为,抛物线的对称轴为直线顶点为,对称轴与直线交点坐标为两个整点为,不含边界若,区域内已经确定有两个整点,在第三项象限和第一象限的区域内都要确保没有整点当时,直线上的点的纵坐标为,抛物线上的点的纵坐标为故答案为:(1);(2)或【点睛】本题属于二次函数的综合创新题目,熟练掌握二次函数的性质是解题的关键,注意分类讨论思想方法的应用20、(1);(2);(3)1【分析】(1)根据题目的规定直接写出方程化简即可.(2)先将方程变形,再根据判别式解出范围即可.(3)先将变形前的方程列出来化简求出a、b、c,相加即可求解.【详解】(1)由题意得,化简后得:.(2)若方程的变形方程为,即.由方程的变形方程有两个不相等的实数根,可得方程的根的判别式,即.解得(3)变形前的方程为: ,化简后得:x2=0,a=1,b=0,c=0,a+b+c=1.【点睛】本题考查一元二次方程的运用,关键在于读题根据规定变形即可.21、详见解析.【分析】连接MA并延长,连接NC并延长,两延长线相交于一点O,点O是路灯所在的点,再连接OE,并延长OE交地面于点G,FG即为所求.【详解】如图所示,FG即为所求.【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影如物体在灯光的照射下形成的影子就是中心投影;中心投影的光线特点是从一点出发的投射线22、(1)见解析;(2)当m0时,存在1个矩形EFGH;当0m时,存在2个矩形EFGH;当m时,存在1个矩形EFGH;当m时,存在2个矩形EFGH;当m5时,存在1个矩形EFGH;当m5时,不存在矩形EFGH.【分析】(1)以O点为圆心,OE长为半径画圆,与菱形产生交点,顺次连接圆O与菱形每条边的同侧交点即可;(2)分别考虑以O为圆心,OE为半径的圆与每条边的线段有几个交点时的情形,共分五种情况.【详解】(1)如图,如图(也可以用图的方法,取O与边BC、CD、AD的另一个交点即可)(2)O到菱形边的距离为,当O与AB相切时AE=,当过点A,C时,O与AB交于A,E两点,此时AE=×2=,根据图像可得如下六种情形:当m0时,如图,存在1个矩形EFGH;当0m时,如图,存在2个矩形EFGH;当m时,如图,存在1个矩形EFGH;当m时,如图,存在2个矩形EFGH;当m5时,如图,存在1个矩形EFGH;当m5时,不存在矩形EFGH.【点睛】本题考查了尺规作图,菱形的性质,以及圆与直线的关系,将能作出的矩形个数转化为圆O与菱形的边的交点个数,综合性较强.23、(I)12;()DE66;()11DF1+1【分析】()根据正方形的性质得到ADCD6,D90°,由勾股定理得到AC6,根据弧长的计算公式和扇形的面积公式即可得到结论;()连接BC,根据题意得到B在对角线AC上,根据勾股定理得到AC6,求得BC66,推出BCE是等腰直角三角形,得到CEBC126,于是得到结论;()如图1,连接DB,AC相交于点O,则O是DB的中点,根据三角形中位线定理得到FOAB1,推出F在以O为圆心,1为半径的圆上运动,于是得到结论【详解】解:()四边形ABCD是正方形,ADCD6,D90°,AC6,边长为6的正方形ABCD绕点A顺时针旋转,得正方形ABCD,CAC60°,的长度2,线段AC扫过的扇形面积12;()解:如图2,连接BC,旋转角BAB45°,BAD45°,B在对角线AC上,BCAB6,在RtABC中,AC6,BC66,CBE180°ABC90°,BCE90°45°45°,BCE是等腰直角三角形,CEBC126,DECDEC6(126)66;()如图1,连接DB,AC相交于点O,则O是DB的中点,F为线段BC的中点,FOAB1,F在以O为圆心,1为半径的圆上运动,DO1,DF最大值为1+1,DF的最小值为11,DF长的取值范围为11DF1+1【点睛】本题考查了旋转的综合题,正方形性质,全等三角形判定与性质,三角形中位线定理()问解题的关键是利用中位线定理得出点P的轨迹24、(1)见解析;(2)抛物线的解析式为yx2+x+1【分析】(1)分别作出A,B,C的对应点A,B,C即可(2)设抛物线的解析式为ya(x+2)(x1),把B(0,1)代入求出a即可【详解】解:(1)如图A'B'C'即为所求A(0,2),B(1,0),C(1,4)(2)设抛物线的解析式为ya(x+2)(x1),把B(0,1)代入得到a,抛物线的解析式为yx2+x+1【点睛】本题考查的知识点是求抛物线解析式以及图形的旋转变换,根据旋转的性质得出A,B,C的坐标是解此题的关键25、 (1) 共有9种等可能的结果;(2) .【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得出现平局的情况,再利用概率公式求解即可【详解】(1)画树状图得:则共有9种等可能的结果;(2)出现平局的有3种情况,出现平局的概率为:考点:列表法与树状图法26、(1)见解析;(2)见解析【分析】根据内接三角形和等腰直角三角形的性质,结合题意即可得出答案.【详解】解:(1)如图1,即为所求(画法不唯一). (2)如图2,即为所求(画法不唯一)【点睛】本题主要考查了圆内接等腰直角三角形的作图方法,考查了学生的作图能力.