欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    小学六年级希望杯初赛题.doc

    • 资源ID:94743584       资源大小:613.50KB        全文页数:18页
    • 资源格式: DOC        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    小学六年级希望杯初赛题.doc

    第八届“希望杯”全国数学邀请赛六年级第1试以下每题6分,共120分。1计算: 。2将分子相同的三个最简假分数化成带分数后,分别是:,其中a, b, c是不超过10的自然数,则(2ab)÷c 。3若用“*”表示一种运算,且满足如下关系:(1)1*11; (2)(n1)*13×(n*1)。则5*12*1 。4一个分数,分子减1后等于,分子减2后等于,则这个分数是 。5将2,3,4,5,6,7,8,9这八个数分别填入下面的八个方格内(不能重复),可以组成许多不同的减法算式,要使计算结果最小,并且是自然数,则这个计算结果是 。6一个箱子里有若干个小球。王老师第一次从中箱子取出半数的球,再放进去1个球,第二次仍从箱子中取出半数的球,再放进去1个球,如此下去,一共操作了2010次,最后箱子里还有两个球。则未取出球之前,箱子里有小球 个。7过年了,同学们要亲手做一些工艺品送给敬老院的老人。开始时艺术小组的同学们先做一天,随后增加15位同学和他们一起又做了两天,恰好完成。假设每位同学的工作效率相同,且一位同学单独完成需要60天。那么艺术小组的同学有 位。8某超市平均每小时有60人排队付款,每一个收银台每小时能应付80人,某天某时段内,该超市只有一个收银台工作,付款开始4小时就没有顾客排队了。如果当时有两个收银台工作,那么付款开始 小时就没有人排队了。9下面四个图形都是由六个相同的正方形组成,其中,折叠后不能围成正方体的是 。(填序号)10如图1所示的四个正方形的边长都是1,图中的阴影部分的面积依次用S1,S2,S3,S4表示,则S1,S2,S3,S4从小到大排列依次是 。11如图2,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根铁棒在水面以上的长度是总长的,另一根铁棒在水面以上的长度是总长的。已知两根铁棒的长度之和是33厘米,则两根铁棒的长度之差是 厘米。12甲、乙、丙三人一起去钓鱼。他们将钓得的鱼放在一个鱼篓中,就在原地躺下休息,结果都睡着了。甲先醒来,他将鱼篓中的鱼平均分成3份,发现还多一条,就将多的这条鱼扔回河中,拿着其中的一份回家了。乙随后醒来,他将鱼篓中现有的鱼平均分成3份,发现还多一条,也将多的这条鱼扔回河中,拿着其中的一份回家了。丙最后醒来,他也将鱼篓中的鱼平均分成3份,这时也多一条鱼。这三个人至少钓到 条鱼。13过冬了,小白兔只储存了180只胡萝卜,小灰兔只储存了120棵大白菜。为了冬天里有胡萝卜吃,小灰兔用十几棵大白菜换了小白兔的一些胡萝卜,这时他们储存的食物数量相等。则一棵大白菜可以换 只胡萝卜。14王宇玩射击气球的游戏,游戏有两关,两关的气球数量相同。若王宇第一关射中的气球数比没射中的气球数的4倍多2个;第二关射中的气球数比第一关增加了8个,正好是没射中的气球数的6倍,则游戏中每一关有气球 个。15已知小明的爸爸和妈妈的年龄不同,且相差不超过10岁。如果去年、今年和明年,爸爸和妈妈的年龄都是小明年龄的整数倍,那么小明今年 岁。16观察图3所示的减法算式发现,得数175和被减数571的数字顺序相反。那么,减去396后,使得数与被减数的数字顺序相反的三位被减数共有 个。17甲、乙两个服装厂生产同一种服装,甲厂每月生产服装2700套,生产上衣和裤子的时间比是2:1;乙厂每月生产服装3600套,生产上衣和被子的时间比是3:2。若两个厂合作一个月,最多可生产服装 套。18一收银员下班前查账时发现:现金比账面记录少了153元。她知道实际收钱不会错,只能是记账时有一个数点错了小数点。那么记错的那笔账实际收到的现金是 元。19现有5吨的A零件4个,4吨的B零件6个,3吨的C零件11个,1吨的D零件7个。如果要将所有零件一次运走,至少需要载重为6吨的汽车 辆。20甲、乙两人分别从A、B两地同时出发,相向而行。出发时他们的速度之比是3:2,相遇后,甲的速度提高20%,乙的速度提高,这样当甲到达B地时,乙离A地还有41千米,那么A、B两地相距 千米。2010年“第八届”希望杯(六年级)初赛详解 1原式=8-(2.38-8/9)+1/9       =6.62 2.有余问题+基础分数问题题中三个带分数可转化为假分数,分别是(3a+2)/3;(4b+3)/4;(5c+3)/5   且这三个假分数为最简假分数,由题可知:3a+2=4b+3=5c+3可解出:a=7,b=5,c=4  那么(2a+b)÷c=19/4=4又3/4 另一解法:假分数的分子除以分母,分别是除3余2,除4余3,除5余3,a,b,c是不超过10的自然数,23符合要求,所以假分数的分子是23,所以a=7,b=5,c=4 3新定义运算  2*1=3×(1*1)=3×1=3   5*1=3×(4*1)=3×3×(3*1)      =9×(3*1)=9×3×(2*1)      =9×3×3=81所以 5*1-2*1=81-3=78 4基础分数问题   由分子减2后会等于1/2,我们可设原分数为(a+2)/2a   那么,分子减1会等于2/3 即  (a+2-1)/2a  =  2/3  解比例方程,可解得 a=3,所以,原分数是5/6 另一解法:约分后两分数的分母分别是3和2,由题可知,原分数的分母就应该是2和3的公倍数,2,3=6,如果原分数的分母是6,很容易判断出,这种假设是符合题意的。 5数字谜问题  要想差最小,被减数与减数的最高位即千位相差得越小越好,由题所给的八个数字可知,差是一个百位数(千位相减为0),那差的百位应该要最小,这样可推出被减数和减数的千位分别为2和9,依次类推可得:6234-5987=247 符合题目要求 6还原问题   在操作第2010次后,还剩一个,再放进一个,正好最后剩二个;可推出:在操作2010次前(即操作第2009次后),箱子里还剩二个,依次倒退一二次,不难发现,在每次操作前,箱子里总是剩下二个,所以,原来箱子里就二个球 7工程问题  由题可知,每个同学的工作效率是1/60,那么后来加进来的15个同学工作二天就完成了1/60 ×15×2= 1/2,另外的1/2是由艺术组的同学工作三天完成的。概括下:15人做2天可完成一半,那么多少人做3天也可完成一半?不难算出10人做3天可完成1/2,即艺术组有10人 8牛吃草问题  一台收银机4小时可应对4×80=320人,而4小时又有4×60人来排队,说明:在收银前,已经有320-240=80人在排队。这二台收银机除了要应对已经排好队的80人,还得应对每个时间新增加排队的人。假设二台收银机工作x小时后无人排队,那么,    80×2×x=80+60x  解得x=0.8小时 9正方体(长方体)展开图形如果其中四个图形是“四联体”的,那剩下的两个图形一定在“四联体”的两侧,所以选 10(1)图中,连接正方形左上角与右下角的那条对角线,阴影部分平均分成两块,每块的面积都会等于四分之一圆面积减去大三角形的面积(即正方形面积的一半)(2)图中,正方形中的两个半圆可合成一个大圆,那么,阴影部分的面积就会等于正方形的面积减去这个大圆的面积(3)图中,连接正方形右上角与左下角的那条对角线,阴影部分就分切出两小块;再连接正方形的那条对角线,阴影部分间的那白色部分也会被切成两小块,容易发现,阴影部分的两小块与白色的两小块分别相等,这样把阴影部分的两小块补过来,阴影部分就是正方形的一半 11长铁棒分成三段,水中两段;短铁棒分成五段,水中四段    由题可知,长铁棒的两段和短铁棒的四小段一样长,即长铁棒的一段相当于短铁棒的二小段,即长铁棒相当于短铁棒的六小段,两根铁棒合起来就是有11小段,共33厘米,即1小段长3厘米,而长铁棒比短铁棒长1小段,所以,两根铁棒相差3厘米 12还原问题设丙拿走x条鱼,那么乙拿走后剩下3x+1条鱼可推出乙拿走了(3x+1)/2条鱼;那么甲拿走后剩下:(3x+1)/2 +3x+1+1=(9x+5)/2条鱼可推出甲拿走了(9x+5)/4条鱼;那么总的鱼有 (9x+5)/4 +(9x+5)/2 +1=(27x+19)/4条由于(27x+19)/4是整数且尽可能小,27x+19应为4的倍数,经尝试,x=3符合条件即总共有25条鱼 另:也可以用尝试法,假设丙分完后每个蒌里是1条鱼、2条鱼、然后倒推,也很容易找出正确的答案 13总食物数量不量,即最后,两只兔各有食物150       白兔   150=剩下的萝卜+换来的白菜       灰兔   150=剩下的白菜+换来的萝卜如果我们假设白兔换来的白菜为x,很容易把上面的等式转换成:   白兔   150=(150-x)+x   灰兔   150=(120-x)+(30+x)由题可知,30+x应该是x的整数倍,而且x的取值大于10但小于20(题中说拿十几颗白菜换)经尝试 x=15 符合题意,(30+15)÷15=3即  一颗大白菜可换3个萝卜 另一解法:小白兔给小灰兔的萝卜数比小灰兔给小白兔的白菜数多30,30是小灰兔给小白兔白菜的整数倍,分解质因数30=2*3*5,而题中说白菜数为十几颗,因此只能是3*5=15颗,则所换的萝卜数是30+15=45只  故一颗白菜换3只萝卜 14设第一关未射中的为x个,射中的就是4x+2第二关      (x-8)×6=4x+2+8解得 x=29所以,总的个数是  5×29+2=147个 15.约数倍数问题   年龄差不变.去年、今年、明年,爸妈的年龄差都是小明年龄的整数倍   而小明的三个年龄是三个连续的自然数,爸妈的年龄差不超过10,在不超过10的数中,有三个连续约数的数只有6,这三个连续约数是1、2、3即小明的三个年龄分别是1岁、2岁、3岁,所以,小明今年2岁 16数字谜及计数问题  设被减数是abc,则差就是cba,两数相差得396,把它列为减数的竖式形式,不难找出a=5、6、7、8、9,相对应,c=1、2、3、4、5,共五组,每组中,b可以取0至9任何一个数字,所以共有 5×10=50种 17统筹安排问题 甲生产上衣所需时间 2/3即10/15,生产裤子所需时间 1/3即5/15乙生产上衣所需时间3/5即 9/15, 生产裤子所需时间 2/5即 6/15对比可知,甲生产裤子的效率高,乙生产上衣的效率高   甲全部生产裤子一个月生产 2700÷ 1/3 =8100条乙全部生产上衣一个月生产 3600÷ 3/5 =6000件配套时,甲多生产了8100-6000=2100条,甲可以用生产2100条裤子的时间来生产成衣,这样可以生产 2100/8100 × 2700=700套成衣所以,二人合作一个月共能生产6000+700=6700套成衣 18错中求解问题   现金比记帐金额少,说明记帐时把小数点往右看错了一位,这样记帐金额增大了10倍,与现金相差9倍,相差153元,所以现金就是153÷9=17元 19生活中的应用题   表示1吨的零件   要16次,分别是:+;+;+;+;+;+;+;+;+;+;+;+; 20行程问题中的比例问题方法一:从行程应用题角度入手,牢牢抓住公式展开思考.   设甲、乙的速度分别是3和2,第一次相遇时,它们所走的路程分别是3s和2s提速后,甲所走的路程是2s,速度是3×(1+20%)=3.6 ,所需要时间即为 2s÷3.6,这个时间也是乙相遇后所走的时间,乙这时速度是2×(1+ 1/3)=8/3 ,所以乙走的路程=8/3 × (2s÷3.6),还差41千米到A所以  3s - 8/3 × (2s÷3.6)=41 可求出 s=27所以,总路程是27×5=135 方法二:从比例应用题入手考虑,抓住把比当份数和正反比例知识点展开思考     第一次相遇时,甲的速度是3,乙的速度是2,速度比是3:2,由于时间相同,路程与速度成正比,所以甲乙所走的路程之比也是3:2     提速后,甲的速度是3*(1+20%)=18/5,乙的速度是2*(1+ 1/3)=8/3,速度比是18/5 : 8/3 =27:20,由于时间相同,路程与速度成正比,所以甲乙所走的路程之比也是27:20    由题可知,乙第一次相遇时所走的路程与甲提速后所走的路程是相同的,那么所占份数也应一样,故我们可把上面两个比中相应份数转化成一样,即     第一次相遇时,甲乙所走路程比是3:2=81:54          提速后,甲乙所走路程比是27:20=54:40     那么 81-40即是41千米,即1 份就是1千米    所以,两地相距(81+54)*1=135千米2010希望杯六年级决赛题(2010-04-11 23:47:05) 转载标签: 杂谈分类:希望杯竞赛试卷2010年希望杯六年级决赛题详解 1  原式=0.75/1.35 ×5.4=3  2.等式左边,经过计算=191/228,再把它转化成等式右边形式  可算出A=1,B=5,C=6  (A+B)÷C=1(由于博文中不好显示这种形式的分数,故解析较略) 3.要想这个奇数最大,那么位数越多越好,要想位数越多,那么该数里面所涉加法的次数越多越好,要想加法的次数越数,那么其中的加数越小越好,依以上考虑,不难找出该数是1011235 4.由题可知:12345679×27=333333333         即12345679×3×9=333333333         即 12345679×9=111111111        可推出12345679×9×8=888888888      即 12345679×72=888888888 5.连接AP、EF  因为三角形BPE和三角形CFD的面积相等,都等于4  所以三角形BEF和三角形EFC的面积相等,这两个三角形的底边都是EF,所以它们的高肯定相等,可以推出EFBC   那么,根据平行线定律,可得  CF:FA=BE:EA 在三角形CPF和三角形APF中,由于高相同,所以面积之比会等于底边之比,即三角形CPF的面积:三角形APF的面积=CF:FA同理可得:三角形BPE的面积:三角形EPA的面积=BE:EA综合上面三个比,可得三角形CPF的面积:三角形APF的面积=三角形BPE的面积:三角形EPA的面积因为三角形BPE的面积=三角形CPF的面积=4所以,三角形EPA的面积=三角形APF的面积=1/2 四边形EPFA的面积=2那么  BE:EA=2:1即三角形BEC的面积:三角形ECA的面积=BE:EA=2:1   三角形ECA的面积=8,所以,三角形BEC的面积=16  那么,三角形BPC的面积=16-4=12 6.527=17×31   师生人数可能是17人,或是31人,即学生人数是16人或30人,由于学生人数能平均分成五组,故学生人数应是30人 7.牛吃草问题   “新草”:扶梯速度:(300×2-100×3)÷(300-100)=1.5米/秒   “原草”:扶梯长度:300×2-1.5×300=150米 8.每处绳子由6段长度为5分米和6段60°弧形组成,所以,至少需要绳子长度=2×(5×6+6× 60°/360° ××5)=91.4 9.容器的容积=×(22-2)÷2×(22-2)÷2×30=3000   容器内水的体积=×(22-2)÷2×(22-2)÷2×27.5=2750   圆锥的体积=×5×5×30×1/3=250  圆锥的体积+水的体积=3000=容器的容器  水刚好满,不会溢出 10.先将5个歌唱类节目排列好,有5×4×3×2×1=120种   这5个节目中有四个空隔,再将3个非歌唱类节目按插在这四个空隔中,有4×3×2=24种  所以共有120×24=2880种 11.设x小时排空   由题意可列出方程: (1/3 1/4 1/x)×14=1  解得   x=84 12.第一次相遇时,时间相等,速度与路程成正比,甲乙的速度比是6:5,甲乙所走的路程比也是6:5,即甲比乙多走1份路,由题可知,甲比乙多走5×2=10千米,即1份路就是10千米,总路程即为11×10=110千米,即,第一次相遇时,甲走了60千米,乙走了50千米   在接下来行走中,甲乙所用的时间相等,所走路程比仍是6:5,此时,甲到B,走了50千米,那么乙就走了50× 5/6 = 250/6千米,离A地60- 250/6 = 110/6千米 13.在数字0-9中,只有4,5,6,8,9,符合题意,   所以有以下种情况:5×9=45,9×5=45,6×8=48,8×6=48,6×9=54,9×6=54,8×8=64 14.  对应法解工程应用题(此处的甲乙丙丁分别表示其工作效率)甲+乙+丙=1/90甲+乙+丁=1/120丙+丁=1/180以上三个式子相加,得  2甲+2乙+2丙+2丁=9/360                      甲+乙+丙+丁=1/80可推出  甲+乙=1/80 1/180 =5/720(1-    5/720 ×36)÷ 1/80 = 60天 15.题中”火车追上到超过甲用30秒”,是火车尾追甲,追及路程是火车长可求出甲的速度= 60000/3600  -  180÷30 = 32/3 米/秒题中“火车与乙相遇到离开用6秒”,是火车尾与乙相遇,相遇路程是火车长可求出乙的速度=180÷6 60000/3600 = 40/3  米/秒题中“火车追上甲到遇到乙用了5分钟”,此时,火车走了60000× 5/60 =5000米甲走了32/3 × 5×60= 3200米,与乙相隔5000-3200=1800米甲乙相遇时间=1800÷(32/3 + 40/3)=1.25分钟 16由题可知:(5)=5,505次(5)结果仍是5,所以,所求的前面部分=5×5=25后一部分:(8)=3,(3)=7,(7)=3,(3)=7、2个重复一次,2010÷2没有余数,2010个就应(3)=7,所以后一部分=2×7=14即,最后结果=25+14=39

    注意事项

    本文(小学六年级希望杯初赛题.doc)为本站会员(uij****hh)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开