2017年普通高等学校招生全国统一考试 文科数学(天津卷)word版.doc
-
资源ID:94744345
资源大小:957KB
全文页数:11页
- 资源格式: DOC
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2017年普通高等学校招生全国统一考试 文科数学(天津卷)word版.doc
绝密启用前2017年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第卷(选择题)和第卷(非选择题)两部分,共150分,考试用时120分钟。第卷1至2页,第卷3至5页。答卷前,考生务必将自己的姓名、准考号填写在答题考上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。祝各位考生考试顺利!第卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。2.本卷共8小题,每小题5分,共40分。参考公式:·如果事件A,B互斥,那么P(AB)=P(A)+P(B)·棱柱的体积公式V=Sh. 其中S表示棱柱的底面面积,h表示棱柱的高·球的体积公式.其中表示球的半径.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合,则(A)(B)(C)(D)(2)设,则“”是“”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件(3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为(A)(B)(C)(D)(4)阅读右面的程序框图,运行相应的程序,若输入的值为19,则输出的值为(A)0 (B)1(C)2(D)3(5)已知双曲线的左焦点为,点在双曲线的渐近线上,是边长为2的等边三角形(为原点),则双曲线的方程为(A)(B)(C)(D)(6)已知奇函数在上是增函数.若,则的大小关系为(A)(B)(C)(D)(7)设函数,其中.若且的最小正周期大于,则(A)(B)(C)(D)(8)已知函数设,若关于的不等式在上恒成立,则的取值范围是(A)(B)(C)(D)第卷注意事项:1用黑色墨水的钢笔或签字笔将答案写在答题卡上。2本卷共12小题,共110分。二. 填空题:本大题共6小题,每小题5分,共30分.(9)已知,i为虚数单位,若为实数,则a的值为 .(10)已知,设函数的图象在点(1,)处的切线为l,则l在y轴上的截距为 .(11)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .(12)设抛物线的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若,则圆的方程为 .(13)若a,则的最小值为 .(14)在ABC中,AB=3,AC=2.若,(),且,则的值为 .三. 解答题:本大题共6小题,共80分解答应写出文字说明,证明过程或演算步骤(15)(本小题满分13分)在中,内角所对的边分别为.已知,.(I)求的值;(II)求的值.(16)(本小题满分13分)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:连续剧播放时长(分钟)广告播放时长(分钟)收视人次(万)甲70560乙60525已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用,表示每周计划播出的甲、乙两套连续剧的次数.(I)用,列出满足题目条件的数学关系式,并画出相应的平面区域;(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多?(17)(本小题满分13分)如图,在四棱锥中,平面,.(I)求异面直线与所成角的余弦值;(II)求证:平面;()求直线与平面所成角的正弦值.(18)(本小题满分13分)已知为等差数列,前n项和为,是首项为2的等比数列,且公比大于0,.()求和的通项公式;()求数列的前n项和.(19)(本小题满分14分)设,.已知函数,.()求的单调区间;()已知函数和的图象在公共点(x0,y0)处有相同的切线,(i)求证:在处的导数等于0;(ii)若关于x的不等式在区间上恒成立,求b的取值范围.(20)(本小题满分14分)已知椭圆的左焦点为,右顶点为,点的坐标为,的面积为.(I)求椭圆的离心率;(II)设点在线段上,延长线段与椭圆交于点,点,在轴上,且直线与直线间的距离为,四边形的面积为.(i)求直线的斜率;(ii)求椭圆的方程.好教育云平台 高考真题 第5页(共5页)2017年普通高等学校招生全国统一考试(天津卷)答案(1)B(2)B(3)C(4)C(5)D(6)C(7)A(8)A(9)2(10)1(11)(12)(13)4(14)(15)()解:由,及,得.由,及余弦定理,得.()解:由(),可得,代入,得.由()知,A为钝角,所以.于是,故.16.()解:由已知,满足的数学关系式为即该二元一次不等式组所表示的平面区域为图1中的阴影部分:()解:设总收视人次为万,则目标函数为.考虑,将它变形为,这是斜率为,随变化的一族平行直线.为直线在轴上的截距,当取得最大值时,的值最大.又因为满足约束条件,所以由图2可知,当直线经过可行域上的点M时,截距最大,即最大.解方程组得点M的坐标为.所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.(17)本小题主要考查两条异面直线所成的角、直线与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力、运算求解能力和推理论证能力.满分13分.()解:如图,由已知AD/BC,故或其补角即为异面直线AP与BC所成的角.因为AD平面PDC,所以ADPD.在RtPDA中,由已知,得,故.所以,异面直线AP与BC所成角的余弦值为.()证明:因为AD平面PDC,直线PD平面PDC,所以ADPD.又因为BC/AD,所以PDBC,又PDPB,所以PD平面PBC.()解:过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因为PD平面PBC,故PF为DF在平面PBC上的射影,所以为直线DF和平面PBC所成的角.由于AD/BC,DF/AB,故BF=AD=1,由已知,得CF=BCBF=2.又ADDC,故BCDC,在RtDCF中,可得,在RtDPF中,可得.所以,直线AB与平面PBC所成角的正弦值为.18.()解:设等差数列的公差为,等比数列的公比为.由已知,得,而,所以.又因为,解得.所以,.由,可得.由,可得,联立,解得,由此可得.所以,的通项公式为,的通项公式为.()解:设数列的前项和为,由,有,上述两式相减,得.得.所以,数列的前项和为.19.【解析】(I)由,可得,令,解得,或.由,得.当变化时,的变化情况如下表:所以,的单调递增区间为,单调递减区间为.(II)(i)因为,由题意知,所以,解得.所以,在处的导数等于0.(ii)因为,由,可得.又因为,故为的极大值点,由(I)知.另一方面,由于,故,由(I)知在内单调递增,在内单调递减,故当时,在上恒成立,从而在上恒成立.由,得,.令,所以,令,解得(舍去),或.因为,故的值域为.所以,的取值范围是.(20)()解:设椭圆的离心率为e.由已知,可得.又由,可得,即.又因为,解得.所以,椭圆的离心率为.()()依题意,设直线FP的方程为,则直线FP的斜率为.由()知,可得直线AE的方程为,即,与直线FP的方程联立,可解得,即点Q的坐标为.由已知|FQ|=,有,整理得,所以,即直线FP的斜率为.(ii)解:由,可得,故椭圆方程可以表示为.由(i)得直线FP的方程为,与椭圆方程联立消去,整理得,解得(舍去),或.因此可得点,进而可得,所以.由已知,线段的长即为与这两条平行直线间的距离,故直线和都垂直于直线.因为,所以,所以的面积为,同理的面积等于,由四边形的面积为,得,整理得,又由,得.所以,椭圆的方程为.好教育云平台 高考真题答案 第6页(共6页)