欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    余弦定理说课稿精选4篇.docx

    • 资源ID:94803619       资源大小:25.73KB        全文页数:17页
    • 资源格式: DOCX        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    余弦定理说课稿精选4篇.docx

    余弦定理说课稿精选4篇余弦定理说课稿 篇一 一、教材分析:(说教材) 余弦定理是全日制中等教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题: 1)、已知两边及其夹角,求第三边和其他两个角。 2)、已知三边求三个内角; 3)、判断三角形的形状。以及相关的证明题。 二、说教学思路 本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。 三、说教法 在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。 1、任务驱动法 教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。 2、引导发现法、观察法 通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。 3、归纳总结法 学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。 4、讲练结合法 讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。 四、说学法 学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。 五、教学目标 (一)知识目标 1、使学生掌握余弦定理及其证明。 2、使学生初步掌握应用余弦定理解斜三角形。 (二)能力目标 1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。 2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。 3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。 (三)德育目标 1、培养学生的爱国主义精神、及团结、协作精神。 2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。 六、教学重点 教学重点是余弦定理及应用余弦定理解斜三角形; 七、教学难点 分析勾股定理的结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。 八、教学过程 教学中注重突出重点、突破难点,从五个层次进行教学。 创设情境、任务驱动; 引导探究、发现定理; 完成任务、应用迁移; 拓展升华、交流反思; 小结归纳、布置作业。 (一)、导入 1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。 2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。 (二)、新课 1、证明猜想,导出余弦定理及余弦定理的变形 经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。 2、解决二个任务 3、操作演练,巩固提高。 4、小结: 通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。 5、作业: 分层布置作业,根据不同层次学生将作业分为必做题和选做题。使不同程度的学生都有所提高。 九、板书设计 板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。 十、课后反思 在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。 余弦定理说课稿 篇二 大家好,今天我向大家说课的题目是余弦定理。下面我将从以下几个方面介绍我这堂课的教学设计。 一、教材分析 本节知识是职业高中数学教材第五章第九节解三角形的内容,与初中学习的勾股定理有密切的联系,在日常生活和工业生产中也时常有解三角形的问题,在实际测量问题及航海问题中都有着广泛的用,而且解三角形和三角函数联系在高考当中也时常考一些解答题。并且在探索建立余弦定理时还用到向量法,坐标法等数学方法,同时还用到了数形结合,方程等数学思想。因此,余弦定理的知识非常重要。特别是在三角形中的求角问题中作用更大。做为职业高中的学生必须学好学透这节知识 根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标: 理解掌握余弦定理,能正确使用定理 培养学生教形结合分析问题的能力 培养学生严谨的推理思维和良好的审美能力。 教学重点:定理的探究及应用 教学难点:定理的探究及理解 二、学情分析 对于职业高中的高一学生,虽然知识经验并不丰富,但他们的智利发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。 三、教法分析 根据教材的内容和编排的特点,为更有效地突出重点,突破难点,以学生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“余弦定理的发现”为基本探究内容,让学生的思维由问题开始,到发想、探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线,联系方法与技能使学生较易证明余弦定理,另外通过例题和练习来突破难点,注重知识的形成过程,突出教学理念的创新。 四、学法指导: 指导学生掌握“观察猜想证明应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。 五、教学过程 第一:创设情景,大概用2分钟 第二:实践探究,形成定理,大约用25分钟 第三:应用定理,拓展反思,大约用13分钟 (一)创设情境,布疑激趣 “兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,从用正弦定理可解的两类三角形出发,揭示勾股定理特点,说明正弦定理解三角形不完备,还有用正弦定理不能直接求解的三角形,应怎样解决呢?需要我们继续探究,引出课题。 (二)逻辑推理,证明猜想 提出问题,探究问题,形成定理,回顾分析,形成结论,再认识结论,总结用途。变形延伸,培养发散,对比特殊,认知推广。落实定理,构建定理应用体系。 (三)归纳总结,简单应用 1、让学生用文字叙述余弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。 2、回顾余弦定理的内容,讨论可以解决哪几类有关三角形的问题。 (四)讲解例题,巩固定理 1、审题确定条件。 2、明确求解任务。 3、确定使用公式。 4、科学求解过程。 (五)课堂练习,提高巩固 1、在ABC中,已知下列条件,解三角形 (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm 2、在ABC中,已知下列条件,解三角形 (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115° 学生板演,老师巡视,及时发现问题,并解答。 (六)小结反思,提高认识 通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会? 1、用向量证明了余弦定理,体现了数形结合的数学思想。 2、两种表达。 3、两类问题。 (七)思维拓展,自主探究 利用余弦定理判断三角形形状,即余弦定理的推论。 余弦定理说课稿 篇三 一、说教材 余弦定理是全日制中等教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题: 1、已知两边及其夹角,求第三边和其他两个角。 2、已知三边求三个内角; 3、判断三角形的形状。以及相关的证明题。 二、说教学思路 本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。 三、说教法 在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。 1、任务驱动法 教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。 2、引导发现法、观察法 通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。 3、归纳总结法 学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。 4、讲练结合法 讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。 四、说学法 学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。 五、教学目标 (一)知识目标 1、使学生掌握余弦定理及其证明。 2、使学生初步掌握应用余弦定理解斜三角形。 (二)能力目标 1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。 2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。 3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。 (三)德育目标 1、培养学生的爱国主义精神、及团结、协作精神。 2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。 六、教学重点 教学重点是余弦定理及应用余弦定理解斜三角形; 七、教学难点 分析勾股定理的结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。 八、教学过程 教学中注重突出重点、突破难点,从五个层次进行教学。 创设情境、任务驱动; 引导探究、发现定理; 完成任务、应用迁移; 拓展升华、交流反思; 九、说过程。 (一)导入 1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。 2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。 (二)新课 3、证明猜想,导出余弦定理及余弦定理的变形 经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。 4、解决二个任务 5、操作演练,巩固提高。 6、小结: 通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。 7、作业: 分层布置作业,根据不同层次学生将作业分为必做题和选做题。使不同程度的学生都有所提高 十、板书设计 板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。 十一、课后反思 在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。 余弦定理说课稿 篇四 大家好,今天我向大家说课的题目是余弦定理。下面我将从以下几个方面介绍我这堂课的教学设计。 一、教材分析 本节知识是职业高中数学教材第五章第九节解三角形的内容,与初中学习的勾股定理有密切的联系,在日常生活和工业生产中也时常有解三角形的问题,在实际测量问题及航海问题中都有着广泛的用,而且解三角形和三角函数联系在高考当中也时常考一些解答题。并且在探索建立余弦定理时还用到向量法,坐标法等数学方法,同时还用到了数形结合,方程等数学思想。因此,余弦定理的知识非常重要。特别是在三角形中的求角问题中作用更大。做为职业高中的学生必须学好学透这节知识。 根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标: 理解掌握余弦定理,能正确使用定理。 培养学生教形结合分析问题的能力。 培养学生严谨的推理思维和良好的审美能力。 教学重点:定理的探究及应用。 教学难点:定理的。探究及理解。 二、学情分析 对于职业高中的高一学生,虽然知识经验并不丰富,但他们的智利发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。 三、教法分析 根据教材的内容和编排的特点,为更有效地突出重点,突破难点,以学生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“余弦定理的发现”为基本探究内容,让学生的思维由问题开始,到发想、探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线,联系方法与技能使学生较易证明余弦定理,另外通过例题和练习来突破难点,注重知识的形成过程,突出教学理念的创新。 四、学法指导: 指导学生掌握“观察猜想证明应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。 五、教学过程 第一:创设情景,大概用2分钟。 第二:实践探究,形成定理,大约用25分钟。 第三:应用定理,拓展反思,大约用13分钟。 (一)创设情境,布疑激趣 “兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,从用正弦定理可解的两类三角形出发,揭示勾股定理特点,说明正弦定理解三角形不完备,还有用正弦定理不能直接求解的三角形,应怎样解决呢?需要我们继续探究,引出课题。 (二)逻辑推理,证明猜想 提出问题,探究问题,形成定理,回顾分析,形成结论,再认识结论,总结用途。变形延伸,培养发散,对比特殊,认知推广。落实定理,构建定理应用体系。 (三)归纳总结,简单应用 1让学生用文字叙述余弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。 2回顾余弦定理的内容,讨论可以解决哪几类有关三角形的问题。 (四)讲解例题,巩固定理 1、审题确定条件。 2、明确求解任务。 3、确定使用公式。 4、科学求解过程。 (五)课堂练习,提高巩固 1。在ABC中,已知下列条件,解三角形。 (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm 2。在ABC中,已知下列条件,解三角形。 (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115° 学生板演,老师巡视,及时发现问题,并解答。 (六)小结反思,提高认识 通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会? 1用向量证明了余弦定理,体现了数形结合的数学思想。 2两种表达。 3两类问题。 (七)思维拓展,自主探究 利用余弦定理判断三角形形状,即余弦定理的推论。17

    注意事项

    本文(余弦定理说课稿精选4篇.docx)为本站会员(麒***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开