2023年-银行不良贷款问题.docx
乐山师范学院2011年数学建模竞赛论文选 题: 论文名称: 学 院: 参赛组别: 组 员:电 话: 电子邮箱:提交日期:银行不良贷款问题数信学院学院专科组魏仙(09级)罗秀玲(09级)高敏(09级)2011.5. 16 VPS 表格Bookl. xls 文件9 编辑幽)视图 插入9 格式Q)工具 数据也)窗口也)帮助国)小皮馈口二串 W 外1 4 吵,00 % ”体 12BXZ |星 M曰且,| % 湍萼菱I ; & | Bookl .xls * X 匿时整理后1 . 目银行不良.0 lssymcm_.修建模s WPS 表格.E39ABCDEFGHIYKL :24231.2109.610.31467.925247.2196.215.81639.726253.2102.2121097.1270.088780020.843571360.678771760.585831490.038988828280.731505010.84841640.34115351#DIV/0l290.70028149-0.0057284#DIV/0l#DIV/0l30-0.1394994#DIV/0l#DIV/0l#DIV/0l31323334不良贷款 (亿元)Y各项贷款余 额(亿元) XI本年累计应 咚贷款(亿贷款项目个 数X3本年固定资 个投资额(亿 元)X435不良贷款(亿元t Y10.843571360.731505010.70028149-0.1394994436各项贷款余额 (亿元)XI10.678771760.8484164-0.0057284137本年累计应收 贷款(亿元) X210.585831490.34115351338贷款项目个数X310. 03898882839本年固定资产 以资额(亿 元)X4140大写 数字4- OKB/S t OKB/S CPU:。%:绘图国八与 自选图形") 、匚joTiajayca上- 三至三图表5分行 编号不良贷款 (亿元)Y各项贷款余额 (亿元)XI本年累计应收贷 款(亿元)X2贷款项目 个数X3本年固定资产投 资额(亿元)X410.967.36.8551.921. 1111.319.816903934.81737.71773.743.280.87.21014.557.8199. 716.51963.262.716.22.212.271.6107.410. 71720.2812. 5185.427. 11843.89196. 11. 71055.9102.672.89. 11464.3110.364.22. 11142. 7124132.211.22376.7130.858.661422.8143.5174.612. 726117. 11510.2263. 515.634146.716379.38.91529.9170.214.80.6242. 1180.473.55.91125.319124.75413.4206.8139.47.22864.32111.6368.216.832163.9221.695.73.81044.5231.2109.610.31467.9247.2196.215.81639. 7253.2102.2121097. 1图表6Matlab计算模型(1)程序: »xl=0.9 63.7 6.8 5 51.9;1.1 111.3 19.8 16 9039;4.8 173 7.7 17 73.7;3.2 80.8 7.2 10 14.5;7.8 199.7 16.5 19 63.2;2.7 16.2 2.2 1 2.2;1.6 107.4 10.7 17 20.2;12.5 185.4 27.1 18 43.8;1 96.1 1.7 10 55.9;2.6 72.8 9.1 14 64.3;0.3 64.2 2.1 11 76.7;4 132.2 11.2 23 76.7;0.8 58.6 6 14 22.8;3.5 117.4 12.7 26 117.1;10.2 263.5 15.6 34 146.7;3 79.3 8.9 15 29.9;0.214.8 0.6 2 42.1;0.4 73.5 5.911 25.3;1 24.7 5 4 13.4;6.8 139.4 7.2 28 64.3;11.6 368.2 16.8 32 163.9;1.6 95.7 3.8 10 44.5;1.2 109.2 15.8 16 39.7;7.2 196.2 15.8 16 39.7;3.2 102.2 12 10 97.1;» X=ones(size(xl(:,l),x 1(:,2:5);Y=xl(:,l);b,brint,r,rint,stats=regress(Y,X,0.05)-1.32990.02860.2174-0.0167-0.0005brint =-2.85740.01120.0538-0.1633-0.00100.19770.04610.38110.1298-0.0001-0.96200.0115-0.17590.82500.17373.1054-2.17772.9513-0.59520.1345-0.4407-0.4663-0.6068-0.79691.23750.39021.0313-1.46070.60923.0744-0.6466-0.4465-3.7446-0.2365-0.7877rint =-4.3246-0.0353-3.5482-2.6480-3.19690.1616-5.50400.9235-3.8972-3.3248-3.8345-3.8362-4.01793.8683-1.8137-3.0685-2.2285-4.8833-2.76500.4310-2.9835-3.8501-6.5527-3.5356-4.19242.40060.05833.19644.29803.54446.04921.14864.97922.70673.59372.95302.90362.80432.27464.28883.84904.29121.96193.98355.71781.69042.9572-0.93663.06262.6170stats =0.819122.63350.00002.8285去掉x3的程序:xl=0.9 63.7 6.851.9;1.1 111.3 19.89039;4.8 173 7.7 73.7;3.2 80.8 7.214.5;7.8 199.7 16.563.2;2.7 16.2 2.22.2;1.6 107.4 10.720.2;12.5 185.4 27.143.8;1 96.1 1.755.9;2.6 72.8 9.164.3;0.3 64.2 2.176.7;4 132.2 11.276.7;0.8 58.6 622.8;3.5 117.4 12.7117.1;10.2 263.5 15.6146.7;3 79.3 8.929.9;0.2 14.8 0.642.1;0.4 73.5 5.925.3;1 24.7 513.4;6.8 139.4 7.264.3;11.6 368.2 16.8163.9;1.695.73.844.5;1.2109.215.839.7;7.2196.215.839.7;3.2102.21297.1;» y二。91.1 4.8 3.2 7.8 2.7 1.6 12.5 1 2.6 0.3 4 0.8 3.5 10.2 3 0.2 0.41 6.8 11.6 1.6 1.2 7.2 3.2;X=xl(:,2:5);y=xl(:,l);Stepwise(X,y,l,2,4,0.05)Wbb、0.03908754.78170.0001, 一 0.H67451.52680.14170.01806120.21810.8296 1 -0.0179954-1.35310.1904rrrr*Coefficients with Error BarsCoeff.p-valt-statX1X2X3X4-0.100.10.20.3Next step: Move X4 outNext StepAll StepsIntercept = -0.970638R-square = 0.780484F = 24.8884RMSE = 1.80781Adj R-sq = 0.738672p = 4.1198e-007Model HistoryExport.2 10 山图表7X1X2X3X4Coefficients with Error Bars-b、I0.02864243.42000.0027 , 0.3353073.87360.0009、 , ,ppp0.151298-0.0007004212.4528-2.76410.02300.0116Coeff.p-valt-statNext step:Export.00.10.20.30.40.5Intercept = -1.60243R-square = 0.713245F = 17.4111RMSE = 2.06622Adj R-sq = 0.658625p = 6.54614e-006Model History图表8Coefficients with Error BarsX1X2X3X4p0.03884374.49670.0002 -0.2174462.77230.0118 -0.00142257 -0.01770.9861-0.000279167 -1.26970.2181-Q(pppCoeff.t-stat p-valNext step:Move X2 inNext StepAll StepsExport.-0.2-0.100.10.20.30.4Intercept = -0.71054RMSE = 1.93107R-square = 0.749529Adj R-sq = 0.701821F = 20.9474p = 1.61663e-006210山SWH图表9Model HistoryCoefficients with Error Bars* 、 I80.03352483.67840.0014c *i c c r一 一0.132911.67730.1083-0.0211015-0.26860.79091-0.000531827-2.50780.0209,pCoeff.t-statp-valExport .-0.2-0.100.10.20.3Intercept = -1,22152RMSE = 1.88175R-square = 0.762162Adj R-sq = 0.716859F = 22,4317p = 9.45915e-007Model HistorywswcrCoefficients with Error BarsCoeff.t-stat p-valoX1X2X3X40.10.20.30.40.5 0.6Intercept = -0.524529RMSE = 2.2897图表H0.02724674.6578o.oooi0.4629446.03900.00000.1512982.45280.0230-0.000823649-2.99260.0067R-square = 0.631091Adj R-sq = 0.580785F = 18.8176p = 1.72233e-005Model HistoryNext step:Move X1 inNext StepAll StepsExport.V0.03352483.67840.00140.2455840.1851012.68222.68330.01360.0136f-0.000700421-2.76410.0116X1X2X3X4Coefficients with Error BarsCoeff.t-stat p-val00.10.20.30.4Next step:Intercept = -1.51629R-square = 0.608916F = 17.1269RMSE = 2.35751Adj R-sq = 0.555586p = 3.27323e-005Export.Model History4321图表12模型(2)程序xl=0.9 63.7 6.851.9;1.1 111.3 19.89039;4.8 173 7.773.7;3.2 80.8 7.214.5;7.8199.716.563.2;2.7 16.2 2.22.2;1.6107.410.720.2;12.5185.427.143.8;1 96.1 1.755.9;2.6 72.8 9.164.3;0.3 64.2 2.176.7;4 132.2 11.276.7;0.8 58.6 622.8;3.5 117.4 12.7117.1;10.2 263.5 15.6146.7;3 79.3 8.929.9;0.2 14.8 0.642.1;0.4 73.5 5.925.3;1 24.7 513.4;6.8 139.4 7.264.3;11.6 368.2 16.8163.9;1.6 95.7 3.844.5;1.2 109.215.839.7;7.2 196.215.839.7;3.2 102.2 1297.1;X=ones(size(x l(:,l),x 1(:,2:4);Y=xl(:,l);b,brint,r,rint,stats=regress(Y,X,0.05)b =-1.40400.02720.2160-0.0005 brint =-2.7511-0.05700.01510.03940.05710.3749-0.0010-0.0001 r =-0.87250.0136-0.13340.85520.23303.1887-2.22243.0229-0.55170.0894-0.4579-0.5760-0.6763-0.97521.13350.33711.0937-1.45940.65832.8851-0.5692-0.4004-3.7626-0.1330-0.7205 rint =-4.2421-0.0355-3.4363-2.5330-3.08680.2512-5.47670.9740-3.7889-3.3001-3.7632-3.9890-4.0479-4.3359-1.9804-3.0616-2.1206-4.7902-2.6511-0.2137-2.9460-3.7381-6.4958-3.4696-4.08862.49710.06283.16964.24353.55276.12611.03185.07182.68553.47882.84752.83692.69532.38554.24743.73594.30791.87153.96775.98391.80762.9372-1.02933.20362.6475stats =0.818531.57740.00002.7015银行不良贷款问题摘要不良贷款率高,最大的危害是影响银行对经济的支持能力。中国的银行 对贷款极其谨慎小心,就是因为不良贷款太多,影响了银行放款能力。如 果靠发行基础货币来解决不良贷款问题,容易引发通货膨胀。如果对之掉 以轻心,不良贷款的大量发生还会诱发社会道德风险,如果加大处理不良 贷款的力度又可能会引起企业连锁倒闭破产,增加财政风险和社会危机。 为了解决以上问题,所以银行必须制定良好的方案。本文通过分析不良贷款与各项贷款余额,本年累计应收贷款,贷款项目, 本年固定资产投资额之间在自然现象中普遍存在相关关系,我们将用回归分析处 理变量之间的相关关系,根据初步的作图分析,不良贷款受几个影响因素主次难 以区分,这时采用一元回归分析预测法进行预测是难以奏效的,我们需要采 用多元回归分析预测法。多元线性回归预测首先是不良因素与其有关影响 因素之间线性关系的数学模型。然后通过对各影响因素未来值的预测推算 出不良贷款的预测值。对于问题一、我们利用题中某银行一年贷款主要业务数据(附表6),根 据表中数据分别用Excel作出不良贷款与各项贷款余额,本年累计应收贷 款,贷款项目,本年固定资产投资额散点图(附图1, 2,3,4),根据图和 专业知识可得他们之间存在不确定的相关关系,所以对于问题一要讨论不 良贷款与几个影响因素之间的相关关系,建立多元线性回归模型,利用Matlab编程确定回归系数(小,仇也也也),以及R2和f的值,由F分布表查得尸。5 (1, 25)=4. 24,由于F=22. 6335> F005(1, 25),说明回归方程的线性回 归效果显著,确定回归方程模型(1),然后通过逐步对回归系数进行检验 得出自变量()对因变量y的影响比较小,考虑剔除自变量(无),得 到最优回归方程,建立模型(2)。再通过最优回归方程对题目中某银行一 年贷款主要业务数据进行预测,预测值y与数据中不良贷款数据基本符合, 说明此模型具有一定的实用性。对于问题二是在问题一的基础上,根据问题一建立的模型可知对不良贷 款的影响不大的是贷款项目。可以知道哪些因素对降低不良贷款有促进作 用或抑制作用,从而给出建议。经检验,本文的模型简单易懂,具有很强的推广性和可行性,对于控制不 良贷款的发生额有较强的控制性。关键字:银行不良贷款多元线性回归逐步回归法最优回归方程一、问题提出商业银行主要业务之一就是对项目建设、固定资产投资等进行贷款。近年来,银行贷款额平稳增长,但不良贷款也有较大比例的提高,给银行贷款业务的 发展带来较大压力。请您:1 .利用网络等收集有关数据资料,建立合适的数学模型帮助银行控制不良贷 款的发生金额;2 .不良贷款是多方面因素造成的,银行希望利用自己业务的有关数据做些定 量分析,以便找出控制不良贷款的办法。下表是某商业银行25家分行一年的主 要业务数据:见图6二、问题分析控制银行不良贷款的发生金额问题;是在着重考虑不良贷款与各项贷款余 额,本年累计应收贷款,贷款项目,本年固定资产投资额之间是否存在着必要 的联系的基础上建立模型。对于问题一,首先根据图6作出散点图(见附表图1、2、3、4)帮助分析, 结合散点图与用Excel计算出的相关系数(见附表5)分析的结果中,建立不良 贷款多元线性回归模型(1)。从而得出上面四个因素与不良贷款金额之间存在 的线性关系。又因银行要控制不良贷款金额,我们应该找出对他影响不大的因素, 从而银行可以适当的调节贷款主要业务,控制或减少不良贷款的金额,进而使银 行损失减到最小,通过观察置信区间是否包含零点,考虑利用逐步回归法剔出对 不良贷款影响较小的变量,由此建立模型(2)得到最优回归方程,以获得较精 确的结果。从而得出控制不良贷款金额的有效办法。对于问题二,根据一建立的模型,已经得出四个自变量中哪一个对不良贷款 金额影响较小,那么银行就可以适当考虑对四个业务的重新分配问题,进而使银 行的损失降到最小。三、模型假设1、假设题目给定的数据具有代表性和现实性,可以作为模型计算的依据。3 、假设不良贷款与各项贷款余额、本年累计应收贷款、贷款项目、本年固定 资产投资额存在线性函数关系。4 、假设不良贷款是随机变量服从均值为零的正态分布。四、符号说明Y:不良贷款为研究指标;无:各项贷款余额;12:本年累计应收贷款;刘:贷款项目;本年固定资产投资额分别为自变量.;bobbbb :回归系数;F:统计量值(尸。5 (1,25)=4.24);R:回归方程的决定系数;p:统计量对应的概率值五、模型的建立与求解1、据图分析y与修和乙的关系,利用表中的数据分别作出他们之间的散点 图(见图1、2)从图1、2可以发现,随着玉、,的增加,y值有明显的增长 趋势。利用Excel计算出相关系数(见表5),由图可知玉衣2,%4与y的相关 系数rWO,根据相关系数的取值范围及意义,则可说明它们与y存在线性相关系, 从而建立如下线性回归模型:丫=/?0+6/+2%2+。3%+。4筋 + £Y(1)L N(O, a )直接利用Mat lab统计工具箱中的命令regress求解,相关程序见(附表6) 得出结果建立表格如下;参数参数估计值参数置信区间%-1.3299-2.8574 0.197740.02860.01120.0461/0.21740.05380.3811匕3-0.0167-0.163301298-0.0005-0.0010 -0.00010R? =0.8191 F=22.6335 p<0.05六、结果分析由表得出线性回归方程 Y=T. 3299+0. 0286%+0. 2174% -0. 01673-0. 0005 羽,成立。表中数据显示,火=0.8191指因变量y (不良贷款)的81. 91%可由 模型确定,F=22.6335不出(1, 25)=4. 24, p<0. 05,因而模型一从整体上看是可 以用的。七、不良贷款预测将回归系数代入模型(1),则可预测银行未来不良贷款额丫,预测值记做y, 由此得到模型的预测方程为:y=Z?O + % 产+ % 产4则,如果知道X,兄2,13, K的取值,就可以计算出预测值丫。如果银行在未来的业务中,维持各项贷款余额为二102.2,本年累计应收贷款乂=12,贷款项目刘=10,本年固定资产投资额须=97.1,则该银行在未来的业务中,不良贷款 y =-1.3299+0.0286X 102. 2+0.2174X 12+ (-0.0167) X 10+ (-0.0005) X 97.1=3.98627 (亿元)对于给定的回归变量的取值,可以以一定的置信度预测因变量的取值范围, 例如,当月=102.2,趋=12,y=10, 乂=97.1可以算出不良贷款的置信度的预 测区间-2.5275 10.7734,他说明在银行将来的业务中各项贷款余额为=102.2, 本年累计应收贷款%2=12,贷款项目%3=10,本年固定资产投资额=97.1,则 可预测不良贷款金额在-2.5275亿元到10.7734亿元之间,为了控制不良贷款的金 额银行可适当的调节各项业务所占的比例使银行在不良贷款方面的损失尽可能 减小。八、模型改进由上表的回归系数中“。=-1.3299, 4=0.0286,公=0.2174, =_o.O167,4二0.0005检查他们的置信区间可知,只有A的置信区间包含。点,由附 表(去掉x3的)知变量无(对因变量y的影响)不是太显著的,则考虑经 过筛选变量尤3这一过程(逐步回归法)建立最优回归方程:丁=4+ 6%+/72%+4工4。(2)直接利用Matlab统计工具箱中的命令regress求解剔除变量无的相关程序见 (附表7),得出结果建立表格如下;参数参数估计值参数置信区间瓦-1.4040-2.7511 -0.05760.02720.01510.03940.21600.0571 0.3749-0.0005-0.0010 -0.0001R2 =0.8185 F=31.5774p<0.05由表得出线性回归方程:y=-1.4040+0.0272%+0.2160 H -0.0005工表中数据显示,-2=0.8185, F=31.5774>22.6335F°Q5(l,25)=4.24,p<0.05.置信预测区间为0.0522 8.45817,同样取各项贷款余额匹=102.2,本年累计应收贷款2=12,本年固定资产投资额羽=97.1,得, =-1.4040+0.0272义102.2+0.2160X 12-0.0005*97.1=3.91929<3.98627,置信预测区间与模型(1)的结 果相比,区间长度明显缩小。因而此模型较模型(1)更优化。此外我们还考虑剔除变量X、刘、x4,以及同时剔除无和天、X1和工4所得图表见附表(图 8-12).八、模型优缺点评价1、对于模型(1)的结果可知,不良贷款与各项贷款余额、本年累计应收 贷款、贷款项目、本年固定资产投资额都存在着一定的联系,但是其中有些项目 与不良贷款的联系并不明显,因此银行在控制不良贷款金额方面没有确切的方法。2对模型(2)信预测区间与模型(1)的结果相比,区间长度明显缩小,F 比模型1大大提高,表明回归直线对样本数据点的拟合程度很高,说明回归方程 线性回归显著。由此可以看出投资项目对不良贷款的影响不显著,则银行可以根 据模型二制定控制不良贷款的方案。给银行的建议根据模型(1)和模型(2)所得不良贷款余额与各项贷款余额、本年累计 应收贷款、贷款项目、本年固定资产投资额的线性回归方程显示,其变量前系数 为负时,说明自变量对降低不良贷款余额均有正向促进作用,其变量前系数为正 时,说明自变量对降低不良贷款余额均有负向抑制作用,由模型可知,其中各项 贷款余额、本年累计应收贷款、本年固定资产投资额的增加对降低商业银行不良 贷款都有影响,但贷款项目对其影响不显著,因此,为了发展经济、保持经济持 续稳定增长,银行应该增加贷款项目,同时扩大对固定资产的投资,保持各项贷 款余额、本年累计应收贷款的稳定,从而间接降低商业银行的不良贷款余额。九参考文献1廖铮生,概率与统计,上海:华东师范大学出版社,2000. 52姜启元,数学建模与数学实验,北京:高等教育出版社,2003. 83付鹏,数学实验,北京:科学出版社,2000400. 0350. 0300. 0250. 0200. 0OoooOoooO505-T-M侬鼐想05. 010. 015. 0不良贷款O30.图表2系列15.0O5.2ooOS5.S2110.00.02.04.06.08.010.012.014.0不良贷款系歹UiOOOOOOOO5.S5.凝4皿匿鼐烟0.00.02.04.06.08.010.012.014.0不良贷款图表3系列10. 02. 04. 06. 08. 010. 012.014. 0系列1180. 0160. 0140. 0120. 0100. 080. 060. 040. 020. 00. 0不良贷款图表4用Excel计算xl, x2, x3, x4与y的相关系数矩阵如下: