《电力电子技术仿真实验》指导书.docx
【电力电子技术试验】指导书合肥师范学院电子信息工程学院.试验一 电力电子器件仿真过程:进入 MATLAB环境,点击工具栏中的Simulink 选项 。进入所需的仿真环境,如图1.1 所示。点击File/New/Model 建一个仿真平台。点击左边的器件分类,找到Simulink 和SimPowerSystems,分别在他们的下拉选项中找到所需的器件,用鼠标左键点击所需的元件不放,然后直接拉到Model 平台中。图 1.1试验一的具体过程:第一步:翻开仿真环境建一个仿真平台,依据表中的路径找到我们所需的器件跟连接器。.元件名称触发脉冲电源接地端子示波器 信号分解器电压表电流表 负载RLCGTO 器件提取路径Simulink/Sources/Pulse GeneratorSim Power Systems/Electrical Sources/ DC Voltage SourceSimulink/Sinks/ScopeSim Power Systems/Elements/Ground Simulink/Signal Routing/DemuxSim Power Systems/Measurements/ Voltage Measurement Sim Power Systems/Measurements/Current Measurement Sim Power Systems/Elements/ Series RLC BranchSim Power Systems/Power Electronics/Gto提取出来的器件模型如图 1.2 所示:图 1.2其次步,元件的复制跟粘贴。有时候一样的模块在仿真中需要屡次用到,这时依据常规的方法可以进展复制跟粘贴,可以用一个虚线框复制整个仿真模型。还有一个常用便利的方 法是在选中模块的同时按下Ctrl 键拖拉鼠标,选中的模块上会消灭一个小“+好,连续按住鼠标和 Ctrl 键不动,移动鼠标就可以将模块拖拉到模型的其他地方复制出一个一样的模块,同时该模块名后会自动加“1,由于在同一仿真模型中,不允许消灭两个名字一样的模块。第三步,把元件的位置调整好,预备进展连接线,具体做法是移动鼠标到一个器件的连接点上,会消灭一个“十字形的光标,按住鼠标左键不放,始终到你所要连接另一个器件的连接点上,放开左键,这样线就连好了,假设想要连接分支线,可以要在需要分支的地方按住Ctrl 键,然后按住鼠标左键就可以拉出一根分支线了。在连接示波器时会觉察示波器只有一个接线端子,这时可以参照下面示波器的参数调整的方法进展增加端子。在调整元件位置的时候,有时你会遇到有些元件需要转变方向才更方.便于连接线,这时可以选中要转变方向的模块,使用Format 菜单下的 Flip block 和 Rotate block 两条命令,前者转变水平方向,后者做90 度旋转,也可以用Ctrl+R 来做 90 度旋转。同时双击模块旁的文字可以转变模块名。然后单击菜单栏中的Edit/Signal Properties 命令来刷模型。模块的颜色也可以在激活模块后,点击右键,在background color 中选择自己宠爱的颜色。连接好的电路图如图 1.3 所示。图 1.3第四步,模块的参数设置。设者模型参数是保证仿真准确和顺当的重要一步,有些参数是由仿真任务规定的,如本例仿真中的电源电压与电阻值等,有些参数是需要通过仿真来确定的。设置模型参数可以双击模块图标弹出参数设置对话框,然后按框中提示输入,假设有不清楚的地方可以借助帮助来看相关功能。本例中,参数设置如下:1. 脉冲发生器的参数设置。双击脉冲发生器,会弹出一个对话框,转变需要的参数后如图 1.4 所示 。其中参数行中从第一个开头分别为 振幅、 周期 、脉宽、 把握角延迟时间把握角a 的设置依据 t=aT/360图 1.42. 翻开电源设置对话框,我们这里设置电源为220V,直接在参数行输入数字即可。.3. 参数设置,这里我们承受默认设计,当需要转变的时候也可以另外设置。4. 负载参数的设置,我们这里只是用到电阻负载,所以可以这样设置,电阻R100,H0,C=inf 设置完如图 1.5 所示:图 1.55. 示波器的参数设置:当我们开头连接的时候,示波器只有一个连接端子,这时我们需要增加示波器的接线端子,具体做法是双击示波器,弹出的对话框如图1.6 示:图 1.6单击工具栏中其次个小图标,即打印机图标的旁边的图标。弹出其次个对话框图1.7。图 1.7只要在Number of axes 项中把 1 改成所需要增加的端子数字就可以,这里我们用到两.个端子,我们把它改成 2 就可以了。在 Time range 中设置一个数值,也即显示时间,所设置的时横坐标。就是我们的的仿真时间6. 仿真参数设置:在仿真开头前还必需首先设置仿真参数。在菜单中选择Simulation, 在下拉菜单中选择Simulation parameters,在弹出的对话款中可设置的工程很多,主要有开头时间、终止时间、仿真类型包括步长和解电路的树枝方法,乐观相对 误差、确定误差等。步长、解法和误差的选择对仿真运行的速度影响很大,步长太长计算简洁发散,步长太小运算时间太长,此题使用ode23tb 算法。仿真参数设计如图 1.8 所示:图 1.8在参数设置完毕后既可以开头仿真。点击运行按钮“ 开头仿真。在屏幕下方的状态栏上可以看到仿真的进程。假设要中途停顿仿真可以点击“按钮。在仿真完毕之后 既可以通过双击示波器来观看仿真的结果。本例的仿真图形电阻如图 1.9 跟图 1.10 所示:图 1.9晶闸管的波形图 1.10 负载的波形假设在一开头观看不到示波器的波形,可以点击工具栏上的望远镜,会自动的给定一个适宜.的坐标,观看到我们需要的波形。假设我们想转变纵坐标,可以单击邮件,选择弹出快捷菜单中的“Axes properties命令,消灭如图 1.11 所示示波器的纵坐标参数设置对话框。图 1.11此题假设要设置电阻电感负载,只需要在RLC 参数中给电感量一个数值就可以了。到这里,我们就把器件 GTO 的仿真完成了。依据同样的方法,再从 Sim Power Systems/Power Electronics 中调用其他需要仿真的器件,就可以观看到我们所需要的波形了。上面做的全控型器件,现在我们做一个半控型器件,也就是我们寻常所说的一般晶闸管。我们在电力电子器件里面提取出一个晶闸来,这里留意晶闸管有两种类型, Detailed Thyristor 的是具体的晶闸管模型,而 Thyristor 是一般晶闸管,具体选择看你对晶闸管参数的要求多高,具体的晶闸管有很多参数可以设置。仿真的电路图如图示模块的参数的设置跟之前的一样,为了得到更好的波形效果,我们把仿真的开头时间 设置为 4,完毕时间设置为 10。同假设运行仿真电路,我们可以得到仿真之后的各种波形。.负载波形晶闸管波形试验二 单相半波可控整流电路仿真过程:1. 建立仿真模型1 首先我们建一个仿真模型的文件。方法跟试验一样。文件名自己给定。2提取电路元件模块。组成单相半波可控整流电路的主要元器件有沟通电源、晶闸管、RLC负载等。提取路径根本上跟我们做的第一个试验是一样的,只是我们这里用到了沟通电源Sim Power Systems/Electrical Sources/ AC Voltage Source。提取出来的元件的如图2.1 所示图 2.1图 2.2(3)将电路元件模块按单相半波可控整流的原理图连接起来组成仿真电路。将元件调 整的到适宜的位置,有些器件需要屡次用到的,可以点击该模块,然后按住鼠标右键直接拖到想要放置的地方就可以实现复制了。连接好的电路如图2.2 所示。2. 设置模型参数。依据试验一的方法我们可以双击模块图标弹出的对话框来设置参数,本例中所设置的参数如下。(1) 沟通电压源,电压为 220V,频率为 50Hz,初始相位为 0 度。在电压设置中要输入的是电压峰值,在该栏中键如“ 220*sqrt(2)。假设在对话框最终的测量旋转选中电压“ voltage,这样电压的数据可以送入多路测量器.Multimeter。这里我们不用设置这个,由于我们直接用了示波器进展观看波形。(2) 晶闸管的参数我们承受了默认的参数,也可以另外设置。(3) 负载RLC,当负载是电阻负载时,R=1, H=0, C=inf无穷大(4) 负载RLC 为电阻电感负载时,R1,H0.01,Cinf,关于负载的参数,这里是没有确定的规定的,可以依据需要修改。3. 仿真参数的设置,本例中我们设置仿真的终止时间为0.1S,算法ode23tb.通过仿真,我们给出几个特别角度的波形图。电阻负载 30 度电阻负载 60 度电阻负载 90 度电阻电感 30 度电阻电感 60 度电阻电感 90 度到这里,我们根本上可以把单相半波可控整流的各个波形仿真出来了,观看波形,跟我们在试验室用示波器看到的还是根本上全都的。.试验三 单相桥式半控整流电路电阻负载:一、仿真步骤1. 启动 MATLAB,进入 SIMULINK 后建一个仿真模型的文件。在这里可以任意添加电路元器件模块。然后比照电路系统模型,依次往文档中添加相应的模块。在此试验中,我们按下表添加模块:序号元器件名称提取元器件位置数量1沟通电源Simpowersystems / Electrical Sourse / AC Voltage sourse12脉冲触发器Simulink / Sources / Pulse Generator23晶闸管模型Simpowersystems /Power Electronics /Detailed Thyristor24二极管模型Simpowersystems /Power Electronics /Diode25电流表模型Simpowersystems /Measurements /Current Measurement16电压表模型Simpowersystems /Measurements / Voltage Measurement27信号分解模型Simulink /Signal Routing /Demus18RLC 串联电路Simpowersystems /Elements /Series RLC Branch19示波器模型Simulink /Sinks /Scope12. 添加好模块后,要对各元器件进展布局。一个良好的布局面板,更有利于阅读系统模型及便利调试。图 3.1.3. 设置模块参数。依次双击各模块,在消灭的对话框内设置相应的参数。1,沟通电源参数设置:电压设置为220V,频率设为 50Hz,其它默认。图 3.22,脉冲触发器设置:振幅amplitude设为 5。周期Period设为 0.02 秒。脉冲宽度pulse width设为 2。相位延迟角phase delay,即触发角。它的设置在调试时需要修改,以实现在不同角度触发时,观测电路各变量的波形的变化。由于它是以秒为单位,故需把角度换算成秒。其计算可按以下公式:t=T/360。例如触发角45 度,周期T0.02,那么t=0.0025,那么此空中应填入 0.0025。图 3.3其次个触发器的设置只需触发角比第一个大180 度,即加上 0.01,其它不变。3示波器的设置:双击示波器,弹出示波器面板,在第一排控件栏中单击其次个控件,弹出参数设置窗口,如下所示:.图 3.4把坐标系数目设为 7,其它不必修改。Time range 是横坐标设置。4. 模型仿真。在模型仿真时要先设置仿真参数,仿真参数的设置与试验一一样。设置好后, 即可开头仿真。点击开头控件。仿真完成后就可以通过示波器来观看仿真的结果。以下是分别在 0 度,30 度,45 度,60 度时的仿真结果。0 度:30 度:.45 度:60 度:电阻电感负载:带电阻电感性负载的仿真与带电阻性负载的仿真方法根本一样,但须将 RLC 的串联分支设置为电阻电感负载。本例中设置的电阻R1,L0.01H,电容为inf。电阻电感负载分别在 0 度,30 度,45 度,60 度时的仿真结果:.0 度:30 度:45 度:60 度:.试验四 单相桥式全控整流电阻负载:一、仿真步骤1. 启动 MATLAB,进入 SIMULINK 后建一个仿真模型的文件。并布置好各元器件。如以以下图所示:图 4.12. 参数设置。各模块参数的设置根本与上一试验一样,但要留意触发脉冲的给定。互为对角的两个示波器的把握角设置必需一样,否那么就会烧坏晶闸管。二、模型仿真设置好后,即可开头仿真。点击开头控件。仿真完成后就可以通过示波器来观看仿真的结果。.以下是分别在 0 度,30 度,45 度,60 度时的仿真结果。0 度:30 度:45 度:60 度:.电阻电感负载:带电阻电感性负载的仿真与带电阻性负载的仿真方法根本一样,但须将 RLC 的串联分支设置为电阻电感负载。本例中设置的电阻R1,L0.01H,电容为inf。电阻电感负载分别在 0 度,30 度,45 度,60 度时的仿真结果:0 度:30 度:45 度:60 度:实.试验五 三相半波整流电路电阻负载:一、仿真步骤1. 启动 MATLAB,进入 SIMULINK 后建一个仿真模型的文件。并布置好各元器件。如以以下图所示:图 6.12. 参数设置。电源参数设置:电压设置为 380V,频率设为 50Hz。要留意初相角的设置,a 相的电压源设为 0,b 相的电压源设为-120,c 相的电压源设为-240。负载参数设置:电阻设为 1,电感为 0,电容无穷大inf。脉冲参数设置:触发信号的参数设置是本例的难点。本例中有三个触发脉冲,由电路原理可 知触发角依次相差 120 度。由于电源电压频率为 50Hz,故周期设置为 0.02s,脉宽可设为 2, 振幅设为 5。延迟角的设置要特别留意,在三相电路中,触发延时时间并不是直接从a 换算过来,由于 a 角的零位定在自然换相角,所以在计算相位延时时间时要增加30 度相位。因此当 a0 度时,延时时间应设为 0.0033。其计算可按以下公式:t=+30T/360。触发角a0 度时,延迟角依次设置为:0.00167,0.00837,0.01507 触发角a30 度时,延迟角依次设置为:0.0033,0.01,0.0167触发角a45 度时,延迟角依次设置为:0.00417,0.01087,0.01757 触发角a60 度时,延迟角依次设置为:0.005,0.0117,0.0184.晶闸管参数设置:二、模型仿真图 6.2设置好后,即可开头仿真。选择算法为 ode23tb,stop time 设为 0.1。点击开头控件。仿真完成后就可以通过示波器来观看仿真的结果。以下是分别在 0 度,30 度,45 度,60 度时的仿真结果。0 度:30 度:.45 度:60 度:电阻电感负载:带电阻电感性负载的仿真与带电阻性负载的仿真方法根本一样,但须将 RLC 的串联分支设置为电阻电感负载。本例中设置的电阻R1,L0.01H,电容为inf。电阻电感负载分别在 0 度,30 度,45 度,60 度时的仿真结果:.0 度:30 度:45 度:60 度:.试验六 三相桥式半控整流电路三相桥式半控整流电路广泛应用于中等容量的整流装置或要求不行逆的电力拖动 中,完整的三相桥式半控整流电路由三个晶闸管和三个二极管、三相电源。触发器等组成。依据原理图,我们调用出三个电源,三个晶闸管,三个二极管,为了实现仿真,我们还需要调用出触发脉冲,电流表,电压表,信号分解器跟信号合成器Mux跟示波 器。各个元器件的模块提取路径跟之前介绍的提取路径一样,提取出来的元件跟布局如 图 7.1 所示图 7.1依据原理图,我们连接仿真电路。连接好的电路如图7.2 所示图 7.2.参数设置:1. 电源参数设置:三相电源的电压峰值电压为 380V,可表示为“220*sqrt(2), 频率为 50Hz,相位分别为 0 度,-120 度,-240 度。2. 负载参数设置:电阻R10 H0 Cinf 电阻电感R10 H0.01 Cinf 脉冲参数设置:触发信号的参数设置是本例的难点。本例中有三个触发脉冲,由宽可设为 2,振幅设为 5。延迟角的设置要特别留意,在三相电路中,触发延时时间并不是直接从a 换算过来,由于 a 角的零位定在自然换相角,所以在计算相位延时时间时要增加 30 度相位。因此当 a0 度时,延时时间应设为 0.0033。其计算可按以下公式:t=+30T/360。触发角a0 度时,延迟角依次设置为:0.00167,0.00837,0.01507 触发角a30 度时,延迟角依次设置为:0.0033,0.01,0.0167触发角a45 度时,延迟角依次设置为:0.00417,0.01087,0.01757 触发角a60 度时,延迟角依次设置为:0.005,0.0117,0.01843. 晶闸管承受默认的参数设置4. 仿真参数设置:翻开设置窗口,选择 ode23tb 算法,将相对误差设置 Le-3,开头时间为 0,停赶忙间为 0.05。设置好各个参数后,单击运行按钮,就可以进展仿真了。下面我们给出几个特别角的波形。电阻负载 0 度电阻负载 30 度.电阻负载 60 度电阻电感负载 60 度电阻电感负载 0 度电阻电感负载 30 度本个仿真要留意对脉冲触发时间的设置要准确,而且对示波器的坐标要调整好。.试验七 三相桥式全控整流电阻负载:一、仿真步骤1. 启动 MATLAB,进入 SIMULINK 后建一个仿真模型的文件。并布置好各元器件。如以以下图所示:图 8.12. 参数设置。电源参数设置:电压设置为 380V,频率设为 50Hz。要留意初相角的设置,a 相的电压源设为 0,b 相的电压源设为-120,c 相的电压源设为-240。负载参数设置:电阻设为 1,电感为 0,电容无穷大inf。通用变换器桥的设置:1,模块的功能:通用变换器桥模块是由 6 个功率开关元件组成的桥式通用三相变换器模块。功率电子元件的类别和变换器的构造可通过对话框进展选择。功率电子元件和变换器的类型有 Diode 桥、Thyristor 桥、MOSFET-Diode 桥、IGBTDiode 桥、Ideal Switch 桥,桥的构造有单相、两相和三相。2,仿真模块的图标、输入和输出。通用变换器桥模块的图标如右图所示。模块的输入和输出取决于所选择的变换器桥的构造。当A、B、C 被选择为输入端,那么直流DC+,-端就是输出端。当A、B、C 被选择为输出端,那么直流DC+,-端就是输入端。除二极管桥外,其它桥的“gpulse输入端可承受来自外部模块的触发信号。3,通用变换器桥仿真模块的参数:本例中个参数设置如以以下图。.图 8.24,同步 6 脉冲触发器的参数设置该模块有 5 个输入端,其图标如以以下图。为输出触发信号端。“alpha_deg是移相把握角信号输入端,单位为度。该 输入端可与“常数模块相连,也可与把握系统中的把握器 输出端相连,从而对触发脉冲进展移相把握。输入端 AB、BC、CA 是同步线电压的输入端,同步线电压就是连到三相沟通电压的线电压。输入端 Block 为触发器模块的使能端, 用与触发器模块的开通与封锁操作,当施加大于 0 的信号时, 触发脉冲被封锁。该模块为一个六维脉冲向量,它包含 6 个触发脉冲,移相把握角的起始点为同步电压的零点, pulses同步 6 脉冲触发器参数设置对话框假设所示,可以设置同步电压的频率跟脉冲宽度,假设勾选了“Double pulsing触发器就能给出间隔 60 度的双脉冲。.图 8.35,常数模块参数设置:常数模块图标如右图所示,该模块只有一个输出 端,在本例中只要转变对话框中数值的大小,即可转变触发把握角的大小。其参数对话框如下所示。图 8.4二、模型仿真设置好后,即可开头仿真。选择算法为 ode23tb,stop time 设为 0.1。点击开头控件。仿真完成后就可以通过示波器来观看仿真的结果。以下是分别在 0 度,30 度,45 度,60 度时的仿真结果。.0 度:30 度:45 度:60 度:.电阻电感负载:带电阻电感性负载的仿真与带电阻性负载的仿真方法根本一样,但须将 RLC 的串联分支设置为电阻电感负载。本例中设置的电阻R45,L1H,电容为inf。电阻电感负载分别在 0 度,30 度,45 度,60 度时的仿真结果:0 度:30 度:45 度:60 度:.试验八 单相全控桥有源逆变电路一、仿真步骤1. 启动 MATLAB,进入 SIMULINK 后建一个仿真模型的文件。并布置好各元器件。如以以下图所示:图 9.12. 参数设置:根本的设置均与单相全控桥式整流电路一样。电路中增加了一个反向的直流电动势,以实现逆变。在本例中,沟通电压设为 220V,50Hz。负载电阻设为 5。直流电压设为 250V。要留意触发脉冲的设置,由于要实现逆变,触发角要大于90 度,且处于对角的触发角设置要一样。二、模型仿真设置好后,即可开头仿真。选择算法为 ode23tb,stop time 设为 0.1。点击开头控件。仿真完成后就可以通过示波器来观看仿真的结果。以下是分别在 90 度,120 度,135 度,150 度时的仿真结果。.90 度:120 度:135 度:150 度:.