欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2023秋哈工大惯性技术大作业.docx

    • 资源ID:95085577       资源大小:66KB        全文页数:28页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2023秋哈工大惯性技术大作业.docx

    Assignment ofInertial Technology惯性技术作业(2023 秋)My Chinese Name张My Student No.16S0040Autumn 2023(5) Frequency =50HZFigure 1-23 response of inner ring angle with 50Hz sinusoidal input x 10-5X Y Plot2 1.510.5 s w 0->-0 5-1-1.5-2-1012XAxisx 10-7Figure 1-24 Trajectory of 2-DOF gyro* s response to 50 Hz sinusoidal input analysis of the result:As shown in the figures above, we could learn that the higher the frequency is, the less the vibration of the outer axis is, and the smaller the trajectory of the spinning axis is.1.3. Conclusion of the taskThe previous discussion of the response of a 2-DOF gyro to the three types of torques shows that they all affect the precision of a gyro, but to different degrees.the constant torque has the largest influence, because it makes the gyro process at a constant rate, with its drifting angle increasing with time. In contrast, the impulse torque has the least effect, since it only causes nutation whose magnitude is quite small and, in practice, quickly decays due to damping. In between lies the effect of sinusoidal torque which causes an error (hat swings within a bounded range. However, the lower is the frequency of the sinusoidal torque, the more is it like a constant one, and the larger the range of its swing become.Assignment 2: Single-axis INS simulation2.1. Description of the taskIn a fictitious test of a magnetic levitation train along a track running north-south, it first accelerates and then cruises at a constant speed. Onboard is a single-axis platform INS, working in the way described by the courseware of Unit 5: Basic problems of INS. The motion information and Earth parameters are shown in table 2-1, and the possible error sources are listed in Table 2-2.You are asked to simulate the operation of the INS within 9,900 seconds, and investigate, first one by one and then altogether, the impact of these error sources on (he performance of the INS.Note that the block diagram in the lecture notes (figure 3.6 of both 2023 and 2023 versions) or the old versions of courseware has to be slightly modified before you can obtain reasonable results.Table 2-1 Motion iiifbnnation and Earth paiametersMotion iiifbnnationvaluesunitsEaith parametersvaluesunitsInitial velocity, northward5nVsAcceleration of gravity9.8ni/s2Initial position0mRadius of the Earth6371kmAcceleration, fioni start21 2 nvsDiu ation of acceleration80sTable 2-2 Possible enor soiucesTypesvaluesunitsTypesvaluesunitsInitial position enor20inAccelerometer scale factor error0.00051Initial velocity enor0.05nvsGyroscope scale factor error0.00051Initial plattbrni niisaligninent enor1ItGyioscope ch ifting enor0.01°/liAccelerometer bias enor0.00002iws22.2. Solution of the taskFigure 2-1 Block diagram of the Single-axis INS, The parameters:Ay。= 20m is the Initial position errorVo = 0.05zn/s is the Initial velocity error a0 = 1 is the Initial platform misalignment error Aw = 0.0002m/s2 is the bias error of the accelerometer K。= 0.0005 is the scale factor error of the accelerometer Kg = 0.0005 is the scale factor error of the gyroscope drift = 0.01°/i is the Gyroscope drifting error2.2.1 no error impactFigure 2-2 S i mu I ink model of north-southward single ax i s INS without errorFigure 2-4 reaI velocity without errorFigure 2-5 reaI dispIacement output without errorFigure 2-6 reaI position error without error2.2.2 impact of initial position error Ay0 = 20mFigure 2-7 Si mu I ink model of north-southward single axis INS v/ith Initial position error20mFigure 2-8 reaI acceleration with Initial position error 20 mFigure 2-9 reaI veIocity with Initial position error 20 m analysis of the result:Compared with the no error situation, (he acceleration and velocity of (he train is the same, but the displacement output is 20m higher than that with no error situation, so that the position error shows 20m.2.2.3 impact of initial velocity error AV0 = 0.05m/sFigure 2-14 reaI veIocity with Initial velocity error 0.05 m/sFigure 2-15 reaI dispIacement output v/ith Initial velocity error 0. 05 m/sFigure 2-16 position error with Initial velocity error 0.05 m/s analysis of the result:Compared with the no error situation, the acceleration of the train is (he same, but ihe velocity is 0.05m/s faster than that with no error situation, so that the displacement output and position error changes as the figures shows.2.2.4 impact of initial platform misalignment error a0 = 1F i gure 2-18 reaI acceI erat i on with Initial platform mi saIi gnment error 1"Figure 2-20 reaI d i spIacement output with Initial platform mi salignment error 1"Figure 2-21 reaI position error with Initial pIatform misaIignment error 1”2.2.5 impact of accelerometer bias error AN = 0.0002m/s2Figure 2-22 si mu I ink model of north-southward single axis INS with accelerometer bias error 0.0002m/s2Figure 2-23 reaI acceleration with accelerometer bias error 0.0002m/s2Figure 2-24 real velocity with accelerometer bias error 0.00027n/s2Figure 2-25 reaI dispIacement output with accelerometer bias error 0.0002?n/s22.2.6 impact of the scale factor error of accelerometer Ka = 0.0005Figure 2-27 si mu I ink model of north-southward single axis INS v/i th acceIerometer sea Ie factor error 0. 0005Figure 2-28 reaI acceleration with accelerometer scale factor error 0. 0005Figure 2-29 reaI velocity with acceIerometer scale factor error 0. 0005Figure 2-30 reaI displacement output with accelerometer scale factor error 0. 0005The report is to contain:1. Description of the tasks - contents of the next two pages and the previous assignments.2. The code of your programs, and (heir explanation.3. The results of your computation or simulation (as listed by the requirement).4. Your analysis of the result, and your reflection on the programming or simulation5. Originality statements or reference/assistance acknowledgements.English is expected in writing, though Chinese is also accepted.Figure 2-31 position error with accelerometer scale factor error 0.00052.2.7 impact of the scale factor error of gyroscope Kg = 0.0005Figure 2-32 si mu I ink model of north-southward single axis INS withFigure 2-34 reaI velocity with Gyroscope sea Ie factor error 0. 0005Figure 2-36 position error with Gyroscope scale factor error 0. 00052.2.8 impact of the Gyroscope drifting error drift = 0.01°/hFigure 2-37 si mu I ink mode I of north-southward single axis INS withFigure 2-38 reaI acceleration with Gyroscope drifting error 0.01 */hFigure 2-40 dispIacement output with Gyroscope dr ift ing error 0.01 */hFigure 2-41 position error v/ith Gyroscope drifting error 0. 01 */h2.2.9 impact of all the errorsIntegrator2Figure 2-42 BIock d i agram of north-southward single axis INS with error a I together.Figure 2-43 real acceleration with error altogether.Figure 2-44 reaI velocity with error altogether.Figure 2-45 real displacement output with error a I together.Figure 2-46 position error with error altogether.2.3. Conclusion of the taskThrough contrasting all the results, we can conclude that the Initial platform misalignment error and gyroscope drifting error is the main component of the whole position bias, and they do most harm to our navigation. So it is a must for us to weaken or eliminate it anyway. In spite of all the disadvantages discussed above, the INS still shows us a relatively accurate results of single-axis navigation.Assignment 3: SINS simulation3.1. Description of the taskIn an fictitious mission, a spaceship is to be lifted from a launching site located at 19°37' NL and 110°57'EL, into a circular orbit 400 kilometers high along the equator. The spaceship is equipped with a strapdown INS whose three gyros, GX, GY, GZ, and three accclcromctcrs, AX, AY, AZ, arc installed respectively along the axes Xb. Yb, Zb of the body frame.Case 1: Stationary testThe body frame of the spaceship initially coincides with (he geographical frame, as shown in the figure, with its pitching axis Xb pointing to the east, rolling axis Yb to the north, and heading axis Zb upward. Then the body of the missile is made to rotate in 3 steps:(1) 80° around Xb(2) 90° around Yb(3) 170° around ZbAfter that, the body of the spaceship stops rotating. You arc required to compute the final outputs of the three accelerometers in (he spaceship, using quaternion and ignoring the device errors. It is known that the magnitude of gravity acceleration is gO = 9.79m/s2.Case 2: The launching processThe spaceship is installed on the top of an vertically erected rocket. Its initial heading, pitching and rolling angles with respect to the local geographical frame arc -90,90 and 0 degrees respectively. The default rotation sequence is heading - pitching -* rolling. The top of the rocket is initially 100m above the sea level. Then the rocket is fired up. The outputs of the gyros and accclcromctcrs in the spaceship are both pulse numbers. Each gyro pulse is an angular increment of 0.01 arcsec, and each accelerometer pulse is le-7g0, with gO = 9.79m/s2. The gyro output frequency is 100Hz, and the accelerometer's is 5Hz. The outputs of the gyros and accelerometers within 1800s are stored in a MATLAB data file named mission.mat, containing matrices GGM of 180000x3 from gyros and AAM of 9(M)0x3 from accelerometers respectively. The format of the data in the two matrices is as shown in (he tables, with 10 rows of each matrix selected. Each row represents the outputs of the type of sensors at a sampling time.The Earth can be seen as an ideal sphere, with radius 6371.00km and spinning rate 7.292x 10-5 rad/s, The errors of the sensors arc ignored, so is the effect of height on the magnitude of gravity. Besides, the influence of height on the angular rates of the geographical frame and the changing rates of latitude and longitude should also be considered. Velocity, position and the geographical frame can be updated every 0.2s, within which the attitude of the vehicle can be updated multiple times, depending on the chosen algorithm (20 for 1-S, 10 for 2-S. and 5 for 4-S).You are required to:(1) compute the final attitude quaternion, longitude, latitude, height, and east, north, vertical velocities of the spaceship.(2) draw the latitude-versus-longitude trajectory of the spaceship, with horizontal longitude axis.(3) draw the curve of the height of the spaceship, with horizontal time axis.(4) draw the curves of the attitude angles of the spaceship, with horizontal time axis.GxGyGz-106584145-106487147-106686148-106486147-106687146-106585145-106587146-106585145-106784147-106587147AxAyAz-159846814634887-1279082-161193414636446-1253706-162539314637974-1228346-163885614639472-1202978-165231914640940-1177617-167562014635359-1221229-168684614636804-1196141-169807114638220-1171047-170930114639605-1145960-172054414640958-11208823.2. Solution of the task3.2.1 easel Stationary testCode:% case 1%The first rotation quaternion%The second rotation quaternion%The third rotation quaternion%call the quaternion multiplication subfunctiong=0;0;0;-9.79;ql=cos(40/l80*pi) sin(40/180*pi) 0 OJ; q2=cos(45/180*pi) 0 sin(45/180*pi) 0; q3=lcos(85/l8()*pi) 0 0 sin(85/l80*pi)J; r=quatmultiply(q 1 ,q2);q=quatmultiply(r.q3);PL=q(l) q(2) q(3) q(4);- q(2) q(l)q(4) -q(3);- q(3)-q(4) q(l)q(2);- q(4) q(3) -q(2) q(l);PR=q(l)-q(2) -q(3) -q(4);q(2) q(l)q(4)-q(3);q(3) -q(4) q(l)q(2);q(4) q(3)-qq(l);P=PL*PR;gn=P*g;gn=gn(2:4)3.2.2 case2 The launching processFlow chart:Figure 3-1 simpIif ied navigation algor ithm for SINSCode:% case 2T=0.2;K=1800/T;R=6371000;%radius of earthwE=7.292*10A(-5);%spinning rate of earthQ=zeros(K+1.4);%quaternion matrix initializinglongitude=zeros( 1 ,K/5+1);latitudc=zcros( 1 ,K/5+1);H=zeros(l.K/5+l);%altitude matrixql=cos(-45/180*pi)00 sin(-45/180*pi);%The first rotationquaternionq2=cos(45/180*pi)sin(45/180*pi)00; %Thc second rotation quaternionq3= 1 0 0 0; %The third rotation quaternionQ( I ,:)=quatmultiply(qua(mulliply(q I ,q2),q3);% initial quaternionEUL( I ,:)=q2eul(Q( 1longitude(l)=l 10+57/60:%initial longitudelalitude( 1)=19+37/60;%initial latitudeH( 1)=100;%initial altitudelength=0;g=9.79;vE = zcros(l,K/5+l); %eastern velocityvN = zcros(l,K/5+l);%northem velocityvH = zeros(l,K/5+l);%upward velocityvE(l)=0;vN(l)=0;vH(l)=0;load miss ion. mat %data loading % ma in calculation sectionfor N=1:Kq 1 =zeros( 1,4,1);ql(l,:)=Q(N,:);forn=l:20-l% Aililude iterationwx=0.01 /(3600* 180)*pi*GGM(N- l)*20+n,l );% Angle incrementwy=0.01/(3600*180)*pi*GGM(N- l)*20+n,2);wz=0.01/(3600* 180)*pi*GGM(N-1 )*20+n,3);w=wx,wy,wz'normw=norm(w);% Norm calculationW=0,-w(l ),-w(2),-w(3);w(1)OM3),-w(2);w(2),-w(3),0,w(l);w ,w(2),w(l),0;I=eye(4);S=l/2-normwA2/48;C= 1 -normwA2/8+normwA4/384;q l(n+1 ,:)=q l(n,:)*(C*I+S*W);Q(N+l,:)=ql(n+l,:);endWE=-vN(N)/(R+H(N); % rotational angular velocity component of a geographic coordinate systemWN=vE(N)/(R+H(N)+wE*cos(latitude(N)/18 0*pi);WH=vE(N)/(R+H(N)*tan(latitude(N)/180*pi )+wE*sin(latitude(N)/l 80*pi);atlitude=WE;WN;WH'*T;%correction of the quaternion by updating the rotation of geographic coordinatenormattitudc=nonn(attitudc);e=a(tilude/nonna(tilude;QG=cos(nonnaltitude/2),sin(nonnattitude/2)* e;Q(N+1 ,:)=quatmultiply(qinv(QG), Q(N+1,:);EUL(N+ l,:)=q2cul(Q(N+1,:); fx=le-7*9.79* AAM(N J);%specific force measured by accelerometer fy=le-7*9.79*AAM(N,2);fz=le-7*9.79*AAM(N,3);Fb=fx fy fz;F=quatmultiply(Q(N+1 ,:),quatmultiply(O,Fb, qinv( Q(N+1,:);%The specific force isdecomposed into geographic coordinate system.FE(N)=F(2);FN(N)=F(3);FU(N)=F(4); %calculate the relative acceleration of the vehicle:VED(N)=FE(N)+vE(N)*vN(N)/(R+H(N)* (an(la(itude(N)Zl 80*pi)- (vE(N)/(R+H(N)+2*wE*cos(latitude(N)/180 *pi)*vH(N)+2*vN(N)*wE*sin(latitude(N)/18 0*pi);VND(N)=FN(N)-2* vE(N)* wE*sin(latitude(N)/180*pi)-vE(N)*vE(N)/(R+H(N)*tan(latitudc(N)/180* pi)-vN(N)*vH(N)/(R+H(N);VUD(N)=FU(N)+2*vE(N)*wE*cos(latitud e(N)/180*pi)+(vE(N)A2+vN(N)A2)/(R+H(N)- g*RA2/(R+H(N)A2;%integration and get the relative velocity of vehicle:vE(N+ l)=VED(N)*T+vE(N);vN(N+1 )=VND(N)*T+vN(N);vH(N+ l)=VUD(N)*T+vH(N);% integration and get the position of vehicle:longitude(N+1 )=vE(N)/(R+H(N)*cos(latitud e(N)/180*pi)*T/pi* 180+longitudc(N);length=sqrt(vE(N)A2+(vN(N)A2)+length;enddisplay(Q(K+1'final attitude quaternion') display(latitude(K+1),'final latitude') disp

    注意事项

    本文(2023秋哈工大惯性技术大作业.docx)为本站会员(太**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开