《确定起跑线》教案.docx
确定起跑线教案确定起跑线教案篇1设计理念:1、尽可能向学生提供现实的素材,让学生感受和学习"现实中的数学。2、创设开放的问题情境和宽松的学习氛围,给学生充分的思考和交流的空 间,引导学生开展自主性的数学活动。3、让学生亲身经历将实际问题抽象成数学模型并进行解释应用的过程。4、关注学生思维水平的发展,让他们经历观察、分析、比较、归纳、应用 的过程。教学内容:人教版课程标准实验教科书数学六年级上册75-76页教材简析:确定起跑线是一节综合应用数学知识的实践活动课,是在学生掌握了圆 的概念和周长等知识的基础上设计的。教材设计这个数学综合实践活动,一方面 让学生了解田径场跑道的结构,通过小组合作的探究性活动,综合运用所学的知 识和方法,动手实践解决问题,学会确定起跑线的方法;另一方面让学生体会数 学在日常生活中的应用价值,增强学生应用数学的意识,不断提高实践能力和解 决问题的能力。教学目标:知识与技能:让学生经历运用圆的有关知识计算所走弯道距离的过程,了解 "跑道的弯道部分,外圈比内圈要长,从而学会确定起跑线的方法。228.08235.93243.79251.64259.50267.35全长(m)400407.85415.71423.56431.42439.27注:元取3.14159 (得数保留两位小数)先师生一起完成第一跑道, 在学生独立完成第二跑道并反馈,最后小组合作完成。提问:观察相邻两跑道的 长度,你发现了什么?生:我发现相邻两跑道的差不是7.85,就是7.86师:那 为什么会出现两个差呢?确定的时候该选哪个数据呢?生发言后师小结:我们计 算的时候n取3.14159,计算的结果是一个近似数,会存在误差,我们该选取7.85 米。师:刚才我们在得出7.85的时候,做了大量的计算,如果圆周率直接用字 母兀来表示,会怎么样呢?生思考反馈。师板书:(72.6+1.25x2)xn-72.6n=72.6n-72.6n+l.25x2xn=1.25x2xn=2.5n (75.1+1.25x2)xn 75.ln=75.1R-75.1n+l.25x2x71=1.25x2x71=2.571 通过交流讨论得出:相邻跑道起 跑线相差距离二跑道宽x2ti提问:从这里可以看出起跑线的确定与什么关系最密 切?【跑道的宽度】。如果跑道的宽发生了变化,你还会求相邻起跑线的差距吗? 师:学校因为扩建,400米跑道的宽扩大为1.5米,相邻起跑线的差是多少? (L5x2n=3n)如果跑道宽改为1米呢?(1x2tt=2r)师:如果在400米的跑道上 进行200米跑步比赛,跑道宽还是1.25米,相邻起跑线的差又该如何确定呢? 三:总结师:今天你有什么收获?试教后发现一些地方存在不足之处,经蔡老师, 吴老师,李老师等几位老师的指导,结合我自己的一些想法,对教案做了一些修 改,具体修改如何? 1、在学生发现小狗,小兔比赛的不公平性后,提出问题: 如果你是裁判,要想比赛公平,你会怎么做? 2、在自学部分:给每位学生准备 一张400米椭圆形跑道图,让学生自己确定选择第几跑道进行研究。并说说跑道 的结构,以及确定如何去求每条跑道的长。3、在71取3.14159进行计算的时候, 发现学生花费了大量的时间,同时也有部分学生存在计算错误的现象,为此,经 蔡老师的指导,我直接让学生用圆周率字母Ji来进行计算,这样就节省了大量的 时间,又保证了计算的准确性。(以下是修改后的教案)教学设计一、自学1、跑步比赛。师:小狗和小兔分别从a,b处出发,沿半圆跑到c, d处。对于这样的比赛你有什么想说的吗?(不公平)为什么会 不公平。生:相同的起点和终点,在外圈跑的人肯定比在里圈跑的人要跑的多。 师:那它们到底相差多少呢?请同学们起算一下。生计算并反馈小狗: 3.14x10=31.4 (m);小兔:3.14x (10+1) =34.54 (m)相差:34.54-31.4=3.14 (m)师:如果你是裁判员,为确保比赛的公平性,你会怎么做?生:终点不变 的情况下,让小兔的起跑线向前移动3.14米。生:终点不变的情况下,让小狗 的起跑线向后移动3.14米。师:为什么这样做呢?生:这样的话就可以保证它 们跑的距离是一样长了。2、(课前出示400米决赛录像)提问:对于运动员在起点所站的位置,你有什么发现?生1:运动员都在自己的跑道上跑生2:运 动员的终点相同,而起点却不一样。师:为什么运动员要站在不同的起跑线上? 生:外圈的跑道比内圈的跑道要长,为了比赛的公平性,所以外圈运动员的起跑 线要向前移。3、揭示课题师:相邻两跑道的差是多少呢?外圈跑道的运动员要 向前移动多少距离呢?这就是这节课我们要学习的内容:确定起跑线(板书课 题)。二、议学1、确定跑道结构(1)我选第()跑道。(2)用手指出所要计算的跑道路线,想一想跑道由()+ ()组成。(3)你能用所学知识求出所选跑道的长度吗?学生自学,并完成上面三个问题(每人课前一张400米跑道 图)。学生汇报板书:每条跑道长=2x直道长+对应圆的周长2、分析比较,确定 思路(1)内外跑道的差异是怎么样形成的?生:内外跑道的长度不一样是因为 每条跑道的直道都是一样长的,而外圈跑道围成的圆的周长比内圈跑道围成的圆 的周长大。(课件演示)(2)小组讨论:怎样找出相邻两个跑道的差距?生: 分别把每条跑道的长度算出来,然后再相减,就可以知道相邻两条跑道的差距。 生:因为跑道的长度与直道无关,只要计算出各圆的周长,再算出相邻两圆的周 长相差多少米,就得出相邻跑道的差距了(课件演示)。师:相邻跑道的差也就 是相邻起跑线所要确定的距离。3、计算验证,解决问题(1)出示教材第76页 主题图,提问:从图中你能收集哪些数学信息?生:每条跑道的直道长为85.96 米,跑道的宽为1.25米,第一条跑道的圆的周长为72.6米。师:看到L25米和 72.6米,你还能联想到什么?生:第2条跑道的直径为75.1米。生:相邻两条 跑道的直径差都是2.5米。(2)让学生完成下表(用计算器计算)123456直径(m)72.675.177.680.182.685.1周长(m)72.6n75.1H77.6r80.1R82.6r85.In全长(m)72.6r+85.96x275.171+85.96x277.6r+85.96x280.1n+85.96x282.6n+85.96x285.171+85.96x2注:圆周率用字母兀表示师:仔细观察表格,你有什么发现? 生:我发现相邻两跑道的直径都是相差24生:我发现相邻两跑道的圆周长都 是相差2.53 生:我发现相邻两跑道的长度都是相差2.5兀。师:2.5n是怎么来 的呢,你能解释一下。通过交流讨论得出:相邻跑道起跑线相差距离=跑道宽x2n 提问:从这里可以看出起跑线的确定与什么关系最密切?【跑道的宽度】。如果 跑道的宽发生了变化,你还会求相邻起跑线的差距吗?师:学校因为扩建,400 米跑道的宽扩大为1.5米,相邻起跑线的差是多少? (L5x2ti=3Q如果跑道宽 改为1米呢?(lx2n=2n)师:如果在400米的跑道上进行200米跑步比赛,跑 道宽还是1.25米,相邻起跑线的差又该如何确定呢?三:总结师:今天你有什 么收获?教后反思:确定起跑线是一节综合实践课,它密切结合数学学科课 内学习内容,从多个方面培养学生的数学能力,有效地提高了学生的数学素养。 一、增强学生的数学综合应用意识 本节课研究的400米椭圆式田径运动场跑 道,是学生司空见惯的且经常接触到的事情,但学生以前没有用数学眼光去观察 过跑道有什么数学问题,但今天把它放在数学课中去研究,激发了学生的学习兴 趣。在设计和教学中,经常让学生从数学角度去发现并解决问题:为什么每条跑 道的起跑线不同而终点相同?每条跑道的差异是怎么样形成的?起跑线间的长 度差是如何确定的,有规律吗?这样教学增强了学生解决问题的意识和综合应用 的意识。二、培养学生的数学逻辑推理能力数学教学可贵之处是引导学生善于 发现规律、寻找规律。本节课,充分调动学生对有关知识和生活的积累,通过自 主探索、观察分析、合作学习、交流辩论、互相启发,把相邻两条跑道的长度差 计算方法,从繁杂到简洁、从死算到活化。最后得出规律是一个常数。让学生享 受到成功的喜悦。当然本节课也存在一些不足之处,有个别学生的基础较差,无 法很好的融入到学习当中,对确定起跑线的方法,理解的不是很透彻,教学过程 中,一些细节的把握做的不是特别到位,以后应加强照顾后进生,让他们也能真 正学会东西,同时不断提高自身水平,让教学变的更加精彩。确定起跑线教案篇3执教者:邹艳湖北省襄樊市大庆路小学指导者:朱贵刚湖北省襄樊市樊城区教研室教学内容:人教版课程标准实验教材六年级上册第7576页。一、教材分析:本课是一节数学综合应用的实践活动课,是课程标准实验教材新增加的一个 内容。培养学生用数学解决问题的能力是义务教育阶段数学课程的重要目标之 一,因此解决问题教学在数学教学中有着重要的作用。它既是发展学生数学思维 的过程,又是培养学生应用意识、创新意识的重要途径。本册教材设计了"确定 起跑线这个数学综合运用活动,让学生通过小组合作的探究性活动,综合运用 所学的数学知识和方法(如:圆的知识),动手实践解决问题,体会数学在日常 生活中的应用价值,增强学生应用数学的意识,不断提高学生的实践能力和解决 问题的能力。二、学生分析:在教学本课之前,我通过调查了解到大部分学生已经掌握圆的概念、圆的画 法还有圆周长的计算方法等知识。例如:我们设计了一张答卷“请你画一个圆并 且能够计算出这个圆的周长和面积”,请60名学生作答,其中98.3%的学生都能 独立并且正确的完成。六年级的学生具备一定的小组自我探究的能力,可以利用 小组合作的形式进行学习,60名学生中100%的学生都喜欢小组合作的这种学习 方式。通过调查我还发现学生对体育活动也很喜欢,相当一部分学生去过体育场, 对体育场的跑道和起跑线并不陌生。通过电视节目学生对起跑时运动员不能站在 同一起跑线的现象也有一定的认识,但具体这样做是为什么、相邻两跑道起跑线 该相差多远呢?学生可能很少从数学的角度去认真的思考。也很难通过经验和观 察得到,需要学生收集相关的数据,具体分析起跑线的位子与什么有关。所以在 教学中学生可能会在“相邻跑道相差多远,这一点上有些困难。三、学习目标:1、通过该活动让学生了解椭圆式田径场跑道的结构,学会确定起跑线的方法。2、通过活动培养学生利用小组合作,探究解决问题的能力。3、通过活动让学生切实体会到探索的乐趣,感受到数学在体育等领域的广 泛应用。四、教学过程:课前谈话:同学们,前不久我们襄樊市承办了湖北省十二届运动会,我市的体育健儿们 努力拼搏取得了优异的成绩。你们都看到比赛了吗?(学生回答)老师也看了一 些比赛,不过老师和同学们一样要上课,还有许多精彩比赛都错过了。今天,我 要先带大家去观摩一场小型的运动会。设计意图:课的开始通过师生对话,谈谈同学们身边发生的大事,合理利 用课前的几分钟,就犹如奏响了课堂教学主题曲的前奏。既吸引学生学习的注意 力,也可拉近师生之间的心理距离,激发学生的学习热情,创设宽松的课堂氛围, 让学生在心理安全的状态下进入学习活动。一、创设情景,提出问题(8分钟)1、情景导入:小动物的运动会。(多媒体播放)四只小兔子从同一条起跑线起跑,分四个道次沿椭圆形跑 道跑一圈,再回到同一个终点,谁先回到终点就为第一。师:同学们对这场比赛有什么看法吗?你有什么办法可以使比赛公平呢?设计意图:数学课程标准中指出数学要紧密联系学生的生活环境,从学 生的经验和已有知识出发,创设良好的教学环境。运动会是学生生活中很熟悉的 活动,它贴进学生的生活实际,真实、自然。课的开始在这样一个学生熟悉的活 动中设计了一场不公平的比赛,让学生在观看的同时也发现了比赛中存在的问 题,并且提出问题。学生还结合自己的生活经验发表了解决问题的方法,比如: 学生提出将起跑线向前移动的方法,等等。激发了学生探究问题的欲望。2、赛事回放:欣赏运动场上运动员起跑时的图片。教师同步讲解:同学们的想法与我们体育比赛中的想法一样,进行400米的 比赛,如果从同一条起跑线起跑,外道比内道长,相邻跑道之间有差距,为了公 平的原则,会将起跑线依次向前移。3、提出问题:体育比赛中,相邻两道起跑线都提前一定的距离,这个距离 是随便移动的吗?相邻起跑线相差多少米?你能看出来吗?4、揭示课题:今天,我们就带着这个问题走进运动场,用我们的知识找出 相邻起跑线相差多少米?重新确定一个公平的起跑线。(板书课题:确定起跑线)设计意图:几幅运动场上的图片搭起了现实生活与数学课堂之间的桥梁, 充分的体现了数学是来源于生活,利用学生的发现提出问题:起跑线提前的距离 是多少?使学生感受到生活中也隐藏着数学问题,数学就在我们的身边。二、观察跑道、探究问题(24分钟)(一)了解跑道结构:出示完整跑道图(共四道,跑道最内圈为400米)1、观察跑道由哪几部分组成?2、在跑道上跑一圈的长度可以看成是哪几部分的和?(板书:跑道一圈长度=圆周长+2个直道长度)设计意图:把生活中的跑道缩小放在屏幕上,既直观又形象,也便于学生 观察。并且直道和弯道用不同的颜色更好的引导学生发现跑道中的秘密:左右两 个弯道合起来其实是个圆。(二)简化研究问题:1、85.96米是指哪部分的长度? 一条直道吗?2、讨论:四个小兔子沿跑道跑一圈,各跑道之间的差距会在跑道的哪一部 分呢?3、小结:既然与直道无关,为了便于我们更好的观察,暂时将直道拿走看 看差距在那里,好吗?(课件:直道消失,屏幕上只剩下左右两个弯道。)设计意图:学生在观察中发现相邻跑道的差距没有在直道部分,有学生想 到会在弯道部分。在这里教师做了一个大胆的创新:既然与直道无关,就把直道 拿走,屏幕上只留下了左右两个弯道。给学生留下了无限的思考空间。(三)寻求解决方法:1、左右两个半圆形的弯道合起来是一个什么?2、讨论:你怎样找出相邻弯道的差距?相邻弯道差距其实就是谁的长度之 差?3、交流小结:只要计算出各圆的周长,算出相邻两圆相差多少米,就是相 邻跑道的差距,也就是相邻起跑线相差多少米。设计意图:新课程标准中指出,教师要积极利用各种教学资源,创造性地 使用教材,设计符合学生发展的教学过程,培养学生的创新意识。在这里学生发 现左右的半圆是一个圆,课件将左右的弯道合成一个圆,鼓励学生大胆设想,通 过小组的合作、交流,倾听别人的意见和想法,激发自己的灵感,让每一个学生 对问题发表自己的见解,呵护他们的创新思维,从而找出问题的结果:弯道之差 其实就是圆的周长之差。(四)、动手解决问题:1、计算圆的周长要知道什么?(直径)2、课件出示:第一道的直径为72.6米,第二道是多少?第三道呢?3、教师带领学生填写表格的前两道,剩下的由学生完成。跑道 直径(米)周长(米)相邻跑道相差长度(米)1.72.6 72.6H1.72.7 +2.5 (72.6+2.5) TJ (72.6+2.5) n-72.6TJ=2.5n4、汇报结论:相邻起跑线相差都是2.5TT,也就是道宽x2xn。说明起跑线 的确定与道宽最有关系。5、计算相邻起跑线相差的具体长度:2.5H=2.5x3.14=7.85米师:同学们通过努力找到了起跑线的秘密,小动物们的比赛应该把起跑线依 次提前7.85米才公平。设计意图:学生在教师的组织、引导下开展小组合作学习,通过填写表格, 找出确定起跑线的规律:即400米起跑线差距是2.5TT,为了便于学生发现规律 及后面的计算,均用代数式来表示,减轻了学生的计算负担,同时也提升了学生 的数学思维品质。学生在探究活动中不仅加强了对所学知识的理解,同时获得了 运用数学解决问题的思考方法,学会了与他人合作,学生的数学素养得到提高。三、巩固练习、实践应用(3分钟)师:小动物们很感谢同学们的帮助,可是它们在比赛时调整了道宽,你能帮 它们再计算一下吗?400米的跑步比赛,道宽为1.5米,起跑线该依次提前多少米?生:1.5x2xn=3x3.14=9.42 (米)四、拓展延伸、自我评价(5分钟)过程与方法:结合具体的实际问题,通过观察、比较、分析、归纳等数学活 动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。情感与态度:在主动参与数学活动的过程中,让学生切实体会到探索的乐 趣,感受到数学在体育等领域的广泛应用。教学重点:通过圆的周长计算公式,了解田径场跑道的结构,能根据起跑线设置原理正 确计算起跑线的位置。教学难点:综合运用圆的知识解答生活中遇到的实际问题,探究起跑线位置的设置与什 么有关。教学过程:一、引入师:请同学们欣赏两场比赛,大家在欣赏的时候注意观察运动员的起跑和经过的路线。(播放课件:波尔特荣获100米冠军和波尔特率领牙买加国家队获得4x100米冠军)师:知道这两场比赛么?预设生1:第一个是牙买加选手波尔特以9秒69的成绩获得2008年北京奥运会的100米冠军。预设生2:第二场比赛是牙买加国家队获得2008年北京奥运会4x10米冠军。师:谁能说说从刚才的录像中你发现了什么?1、解决问题:在运动场上还有200米的比赛,道宽为1.25米,起跑线又该 依次提前多少米?预设生1:道宽与前面的400米一样,我可以用前面算的7.58米除以2,是 3.79 米。预设生2: 200米的比赛就只跑了 400米的一半,跑了一个弯道,只增加了 一个道宽,就可以直接用道宽xTb2、比较方法:同学们想的很巧妙,谁的更实用呢?3、全课小结:谈一谈,这节课你有什么收获?设计意图:数学的学习要应用于生活,但是不要死搬硬套。生活中的问题 很多,学生通过对400米跑道起跑线的确定,让他们能灵活的运用知识解决其他 类似的问题,小小的拓展练习打开了学生思维的空间,开发出学生的无限智慧, 使学生的知识变的鲜活起来。确定起跑线教案篇4【教学内容】人教版课程标准实验教科书数学六年制上册第7576页【教学目标】1 .让学生经历运用圆的有关知识计算所走弯道距离的过程,了解"跑道的弯 道部分,外圈比内圈要长,从而学会确定起跑线的方法。2 .结合具体的实际问题,通过观察、比较、分析、归纳等数学活动,让学生 通过独立思考与合作交流等活动提高解决实际问题的能力。【教学重点】通过圆的周长计算公式,了解田径场跑道的结构,能根据起跑线设置原理正确计算起跑线的位置。【教学难点】综合运用圆的知识解答生活中遇到的实际问题,探究起跑线位置的设置与什么有关。【教学过程】情境引入,提出学习目标.1 .情景导入:赛事回放。欣赏运动场上运动员起跑时的图片。师:同学们对这场比赛有什么看法吗?你认为怎样比赛才是公平的呢?师:同学们的想法与我们体育比赛中的想法一样,进行400米的比赛。如果 从同一条起跑线起跑,外道比内道长,相邻跑道之间有差距,为了公平的原则, 会将起跑线依次向前移。2.提出问题:体育比赛中,相邻两道起跑线都提前一定的距离,这个距离是 随便移动的吗?相邻起跑线相差多少米?你能看出来吗?3、学习目标:了解“跑道的弯道部分,外圈比内圈要长,学会确定起跑线的 方法。(板书课题:确定起跑线)二、展示学习成果。(一)先让学生自己了解“跑道的弯道部分,外圈比内圈要长,整理和归 类确定起跑线的方法。(二)观察,明确差距:(出示完整跑道图)师:观察这个图,每条跑道一圈的长度相等吗?生:不相等。师:差别在哪里昵?生:差别在跑道的弯道部分,外圈的弯道路线长,内圈的弯道路线短。终点 相同,如果在同一条起跑线,外圈的运动员跑的距离比较长。师:所以,比赛的时候,为了公平,外圈的起跑线位置应该靠前一些,保证 每个运动员都跑完相同的距离。(三)分析,确定思路:1、小组交流:观察上图,每一条跑道具体是由哪几部分组成的?汇报:每一条跑道都是由两个直道和两个半圆形跑道组成的。师:85.96米是指哪部分的长度?生:指每一条直道都是85.96米。师:既然每一条直道都是85.96米,也就是说,跑道的长度与直道无关,为 了便于我们更好的观察,我们暂时将直道拿走,可以吗?师:左右两个半圆形的弯道合起来是什么?生:合起来是一个圆。师:现在每一圈跑道的长度可以看成什么呢?生:因为两个半圆形跑道合起来就是一个圆,所以每条跑道的长度可以看成 是两条直道的长度与圆的周长的和。2、小组讨论:怎样找出相邻两个跑道的差距?汇报小结:分别把每条跑道的长度算出来,也就是计算2个直道长度与一个圆周长的因为跑道的长度与直道无关,只要计算出各圆的周长,再算出相邻两圆的 周长相差多少米,就是相邻跑道的差距。三、激发知识冲突师:计算圆的周长要知道什么?生:直径师:第一道的直径为72.6米,第二道是多少?第三道呢?(让学生选择自己喜欢的方法进行计算)方法一:计算完成下表。(引导学生将3.14159换成n进行计算)师:刚才大家通过计算已经知道了 400米跑相邻两个跑道长度大约相差7.85 米,也就是相邻跑道的起跑线应该相差7.85米。哪一种方法更快更简便呢?生:第二种方法更简便。生:相邻跑道起跑线相差都是"跑道宽x2xn(板书:400米跑相邻起跑线相差:跑道宽x2x7i)师:从这里可以看出:起跑线的确定与什么关系最为密切?生:与跑道的宽度关系最为密切。师(小结):同学们经过努力终于找到了确定起跑线的秘密!对了,其实只 要知道了跑道的宽度,就能确定起跑线的位置。四、拓展应用。1、师:同学们真利害!可是某一次比赛时裁判调整了跑道的宽度,你能帮裁判再计算一下相邻两条跑道的起跑线又该相差多少米吗?400米的跑步比赛,跑道宽为1.5米,起跑线该依次提前多少米?如果跑道 宽是1.1米呢?2、在运动场上还有200米的比赛,跑道宽为1.25米,起跑线又该依次提前 多少米?五、全课小结:谈一谈,这节课你有什么收获?确定起跑线教案篇5教学目标:1 .结合实际生活,通过"确定起跑线”这一活动,让学生了解400米跑道的基 本结构,理解相邻跑道的长度差与圆的周长以及起跑线位置之间的关系;掌握确 定起跑线的方法。2 .通过操作、观察与讨论,培养学生分析、推理、归纳的能力,在综合运用 知识解决实际问题的过程中,进一步加深学生对所学知识和方法的理解。3.通过创设情境,体验数学与生活的密切联系,以及数学知识在实际生活中 的广泛应用,激发学生学习热情,培养学生主动参与、解决的问题的意识。教学重点:能运用周长的知识确定起跑线。教学难点:为什么求周长差就是求相邻起跑线的距离如何利用分析、比较,推导出跑道长度差从而确定起跑线的位置。教具准备:电脑课件、计算器、小卷子教学过程:一 .谈话引入:L初步了解起跑线中的问题:问:课前老师想做一个小调查,看过田径比赛么?喜欢看么?师:老师这儿正好有一段雅典奥运会田径比赛的录像,是关于100米和400米赛跑的,想看看么?先听老师提个小要求。问:认真观察、对比两项比赛,想想规则上有什么不同?问:100米与400米赛跑的规则有什么不同么?生:起跑线不同,100米是在同一起跑线上400米的起跑线是不同的。师:为什么100米站在同一起跑线,而400米比赛站在不同起跑线呢?生:100米:在直道上跑,长度是一样的,所以起跑线相同。400米:站在不同的跑道上,如果起跑线还一样,跑的长度就多了,外侧的 人就吃亏了。问:如果跑400米站在同一起跑线起跑,回到同一终点成么?师:直道上大家跑的都是一样的,但弯道上的长度不一样,所以站在同一起 跑线上就吃亏了!问:是不是只有最外侧的人吃亏呢?生:每条跑道的长都变了,所以外侧所有人都吃亏了,只不过最外侧的最吃 亏。师:对。任何体育比赛都要公平竞争!也就是说每条跑道上的人跑的长度应 该是一样的。板书课题:这就是我们今天要研究的内容:"确定起跑线一一板书问:这是标准的400米跑道,最内侧跑道长400米,如果逆时针跑,怎么确定他们的位置呢?谁能到前边图上大概指一指?问:外圈的人为什么要往前站?不往后站呢?生:里圈跑的是400米,外圈跑道比里圈的长,往前站点儿,跑的少,距离终点近了,2人跑的距离也就一样了,比赛更公 平。问:你们都认可么?我们看到的400米赛跑跑道才会是这样的。2 .提出问题:师:可是到底往前站多少米,也就是说:相邻2道的起跑线到底应该相差多少才能保证比赛的公平呢?3 .出示条件:问:想要研究这个问题,你们觉得我们需要哪些相关条件?生:半径或直径、直道长、每条跑道的宽度,需要画几条跑道等等出示图:标准400米跑道最内侧跑道总长度400米,直径为73米,直道长度85.39米每条跑道宽L25米,共6条跑道4 .解决问题:如何确定起跑线1出示设计任务:师:我们就以1号和2号跑道为例进行研究可以么?谁来给大家读一读合作 要求分工合作,根据相关数据,计算1号和2号跑道起跑线相差的距离。将列式、答案写在下面的横线上。(可以使用计算器)汇报:组1:内道:400米列式:直径:73 (米)跑道总长:73 x 3.14+ 85.39 x2 =229.22+170.78 = 400 (米)外道直径:73+ 1.25 x2 = 75.5 (米)跑道总长:75.5x3.14+ 85.39 x2 = 237.07+ 170.78 = 407.85 (米)周长差:407.85 - 400 = 7.85 (米)相邻起跑线的差=外跑道全长一内跑道全长(板书)组2:直道的长度是不变的,求2条跑道的长度差,就是求圆的周长差。内道直径:73 (米)圆周长:73 x3.14 = 229.22 (米)外道直径:73 + 1.25 x2 = 75.5 (米)圆周长:75.5 x 3.14 = 237.07 (米)周长差:237.07 - 229.22 = 7.85 (米)相邻起跑线的差=外跑道圆周长一内跑道圆周长(板书)对比评价问:你们更欣赏哪种方法?说说理由。生:第2组的计算相对于前一种方法简单。深入探究,寻找规律师:刚才只有2个人,要是有6个人参加400米比赛,你能继续研究起跑线 的位置么?探究要求:确定其他4条跑道相邻起跑线相差的距离,在练习本上独立完成小组交流你们用了哪些方法,说说各自的理由。组1:继续算周长差3 号直径:73+1.25x4 = 78 (米)跑道长:78x3.14 +85.39x2 = 244.92 + 170.78 = 415.7 (米)周长差:415.7 - 407.85 = 7.85 (米)4 号直径:73+1.25 x6 = 80.5 (米)跑道长:80.5x3.14 +85.39x2 = 252.77 + 170.78 = 423.55 (米)周长差:423.55 -415.7 = 7.85 (米)往下,不用计算了,都是相差7.85米组2:继续算圆的周长差3 号直径:73+ 1.25 x4= 78 (米)圆周长:78x3.14 = 244.92 (米)周长差:244.92 - 237.07 = 7.85 (米)4 号直径:73+ 1.25 x6= 80.5 (米)圆周长:80.5x3.14 = 252.77 (米)周长差:252.77-244.92 = 7.85 (米)问:为什么不需要再往下计算,你也知道周长的差是7.85米呢?追问:周长都相差7.85米只是你们的猜想?怎么验证你们的结论?生L继续计算生2:列式中找规律:例如:第1圈周长:73Tl (米)第 2 圈周长:(73 + L25x2) n = 75.5n (米)圆的周长差:1.25x2n = 7.85 (米)第 3 圈周长:(73+ 1.25x24) n = 78n (米)圆的周长差:1.25 x2n = 7.85 (米)相邻跑道长度差=1.25x211=直径差xn (板书)生:也就是说每个相邻跑道的直径差:1.25x2 = 2.5周长差:1.25x2xn = 2.5n所以相邻跑道的周长差一定,总是:1.25x2xn = 2.5n生1: 100米跑的运动员在同一起跑线上。生2: 400米跑的运动员没在同一起跑线上。生3:他们的终点都是一样的。师:100米的运动员在同一起跑线上公平不公平?生:公平。师:如果400米赛的运动员在同一起跑线上,会怎么样?预设生1:外圈长,内圈短,他们跑的长度就不一样了。预设生2:如果最里圈是400米的话,外面跑道的运动员就会跑得比400米 多,这样比赛就不公平了。师:第一条起跑线画好后,其他起跑线怎样画才能公平?预设生1:第二条起跑线要比第一条起跑线稍提前一点。师:那要提前多少呢?预设生2:相邻跑道长度差多少,起跑线就向前移多少。师:相邻起跑线相差多少米呢?今天,我们就带着这个问题走进运动场,一 块来研究一下如何确定起跑线。板书课题:确定起跑线师:同学们见过400米的运动场么?请看(出示课件)这就是一个简易的 400米运动场的平面图。一共有几条跑道?(8个)。最里面的我们一条我们通 常叫做第一跑道,从里到外一次是1到8跑道。同学们知道么? 400米的运动场 指的是哪条跑道。(第一条跑道的内侧线)师:同学们从我们的示意图中,你还能获得哪些数学信息。起跑线的距离差也是:1.25x2x71 = 2.511生3:公式推导跑道线的位置问:刚才有同学还在思考一个问题,跑步的时候,我们并不是压在边线上跑, 而是在跑道的正中间跑,这样会不会影响我们确定相邻起跑线之间的距离呢?生:环宽都是一样的,相邻跑道的周长差一定,总是:1.25x2x7i = 2.5n,只与环宽有关,与半径、直径、直道长度都无关,所以不影响。所以相邻起跑线距离差就是2.5no (课件演示直道部分)拓展提高问:我们刚才只研究了 400米跑步时起跑线之间的位置关系,那其他情况 呢?问:你们还想了解那些田径项目起跑线的确定方法呢?(50 米、100 米、200 米、800 米、1600 米.)问:谁能解决第一个问题:50米的短跑,如何确定起跑线?生:只要在直道上跑完50米,就可以站在同一起跑线上。问:谁能解决第2个问题:100米的短跑,如何确定起跑线?生:100米就不用,延长出去就可以在直道上跑。师:看来你是个善于观察身边事的孩子,我们跑道设计图上真的有这样一段 延长线。(出示图)问:如何确定200米的起跑线呢?用刚才研究的方法,自己算一算。问:为什么有的同学计算的这么快?生:由半圆和一条直道组成,比400米减少了一半长度差也减少了一半:7.85 4-2 = 3.925 (米)问:800米和1600米呢?生:800 米:7.85x2 = 15.7 (米)1600 米:7.85x4反问:真的么?生活中是这样的么?(第一圈周长不同,后边第二圈可以串道,不需要多跑)师:其实串道也是有一定的要求的,每个标准运动场都有专门的串道线。看来运动场里的数学问题还真是不少,我们今后还有机会进行进一步的研 究。三、课堂小结:确定起跑线教案篇6一、创设问题情境,引入新课师:孩子们,你们还记得上个星期在师大运动场举行的全校运动会吗?生:(争先后地说)记得。师:那么你们认为哪一项比赛最有趣呢?生:赛跑(大多数同学)师:老师这里有两幅图,我们一起来看一下,(课件出示100米,400米道 起跑截图),最后说一说你们发现了什么?生:我发现了,100米跑运动员起跑位置是在一条直线上,400米跑运动员 起跑不在同一起跑线上。师:孩子们,你们说他说的好不好?生:好师生:刚才这位同学观察得非常仔细,大家为他鼓鼓掌好吗?(热烈的掌声)师:100米跑运动员在同一起跑线上起跑公平吗?生:公平!师:为什么?生:因为都是直跑道,距离相等,所以公平。师:摸摸孩子的头,说“你真聪明"!你们再想一想:400米跑的运动员如果也在同一起跑线上起跑,会怎样?生1:不公平,因为外圈大,内圈小。生2:我也认为不公平,因为越靠里圈的运动员跑的距离越短,这对跑外圈 的运动员很不公平。师做沉思状师:哦,不公平?那么你们认为怎样才公平呢?有没有好的解决办法?可以 小组讨论。一番讨论,交流后。生:起跑线应该依次提前,确保每一位运动员都跑400米。师:应该依次提前多少呢?请看大屏幕。出示课件(400米运动场模拟图)师:老师这里已经给你们确定好了第一条路道的起跑线,其他的跑道的起跑 线你们能确定吗?生:自信地说:能!师:好!请你上来画一画好吗?生上台画,但是他画起来,很随意,有的距离长,有的距离短。师:你们认为这样就能确定起跑线吗?生都感觉很迷惑,但没人说话。师:是不是缺点什么?(微笑着)生:恍然大悟,是的,我认为应该先确定要依次提前多少米。师:你们认为应该依次提前多少米呢?生思考,但没人回答这个问题。二、介绍400米运动场,探究确定起跑线位置的方法师:好,接下来,我们就带着这个问题一起走进运动场,共同研究一下如何 确定起跑线的位置。(板书课题:确定起跑线)师:请看大屏幕(课件出示,400米运动场平面图;这是400米运动场平面 图,你们知道400米运动场的400米是指哪一条跑道的长度吗?)生:最里面的一条的跑道(第一跑道,内侧线的长度。)师:介绍400米运动场(各跑道、直道、弯道、直径、道宽)师:你们知道如何求第一跑道的周长吗?生:认真观察平面图,有部分同学已经有所发现,并举手想说,我示意他们 把手放下。师:看来一部分同学已经知道了,但一部分同学还没完全看懂,老师这里有 张简化图,一起看一下好吗?生:好(课件出示:第一跑道内侧线抽象图)师:这条跑道包括哪些部分?生:两条直道和两条弯道。师:两条直道有什么关系?弯道呢?生1:两条直道相等,两条弯道相等。生2:两条弯道合起来是一个图。(课件演示:证明学生想法)师:刚才他们说的好不好?请为他们伸出你们的大拇指。生:都微笑看、点头,并伸出了大拇指。师:现在让你们求第一跑道的全长,你们会算吗?生:会师:开始吧!学生静静地列式计算,我下去走动巡视,并在一些细节上提示一些学生,展 示学生的作品(列式及计算过程)并给予表扬,对不仔细的学生给予提醒。师:第一条跑道的长度会算了,第二道跑道如何计算呢?生:我想应该是一样的。师:什么一样?有不同的地方吗?生:计算方法一样,但第二条跑道的直径要比第一条的长。师:有谁知道第二条跑道的直径怎么求吗?(课件出示抽象图2)引导学生观察。生:第一条跑道