欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    九年级数学知识点复习提纲.docx

    • 资源ID:95148200       资源大小:17.77KB        全文页数:12页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    九年级数学知识点复习提纲.docx

    九年级数学知识点复习提纲 一、相像三角形(7个考点) 考点1:相像三角形的概念、相像比的意义、画图形的放大和缩小 考核要求:(1)理解相像形的概念;(2)把握相像图形的特点以及相像比的意义,能将已知图形根据要求放大和缩小. 考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理 考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算. 留意:被判定平行的一边不行以作为条件中的对应线段成比例使用. 考点3:相像三角形的概念 考核要求:以相像三角形的概念为根底,抓住相像三角形的特征,理解相像三角形的定义. 考点4:相像三角形的判定和性质及其应用 考核要求:娴熟把握相像三角形的判定定理(包括预备定理、三个判定定理、直角三角形相像的判定定理)和性质,并能较好地应用. 考点5:三角形的重心 考核要求:知道重心的定义并初步应用. 考点6:向量的有关概念 考点7:向量的加法、减法、实数与向量相乘、向量的线性运算 考核要求:把握实数与向量相乘、向量的线性运算 二、锐角三角比(2个考点) 考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值. 考点9:解直角三角形及其应用 考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简洁的实际问题,尤其应当娴熟运用特别锐角的三角比的值解直角三角形. 三、二次函数(4个考点) 考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数 考核要求:(1)通过实例熟悉变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义. 考点11:用待定系数法求二次函数的解析式 考核要求:(1)把握求函数解析式的方法;(2)在求函数解析式中娴熟运用待定系数法. 留意求函数解析式的步骤:一设、二代、三列、四复原. 考点12:画二次函数的图像 考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像. 考点13:二次函数的图像及其根本性质 考核要求:(1)借助图像的直观、熟悉和把握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质. 留意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式. 四、圆的相关概念(6个考点) 考点14:圆心角、弦、弦心距的概念 考核要求:清晰地熟悉圆心角、弦、弦心距的概念,并会用这些概念作出正确的推断. 考点15:圆心角、弧、弦、弦心距之间的关系 考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的根底上,运用定理进展初步的几何计算和几何证明. 考点16:垂径定理及其推论 垂径定理及其推论是圆这一板块中最重要的学问点之一. 考点17:直线与圆、圆与圆的位置关系及其相应的数量关系 直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映.在圆与圆的”位置关系中,常需要分类争论求解. 考点18:正多边形的有关概念和根本性质 考核要求:熟识正多边形的有关概念(如半径、边心距、中心角、外角和),并能娴熟地运用正多边形的根本性质进展推理和计算,在正多边形的计算中,经常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题. 考点19:画正三、四、六边形. 考核要求:能用根本作图工具,正确作出正三、四、六边形. 九年级数学学问点复习提纲 篇2 1、图形的相像 相像多边形的对应边的比值相等,对应角相等; 两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相像; 相像比:相像多边形对应边的比值。 2、相像三角形 判定: 平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相像; 假如两个三角形的三组对应边的比相等,那么这两个三角形相像; 假如两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相像; 假如一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相像。 3、相像三角形的周长和面积 相像三角形(多边形)的周长的比等于相像比; 相像三角形(多边形)的面积的比等于相像比的平方。 4、位似 位似图形:两个多边形相像,而且对应顶点的连线相交于一点,对应边相互平行,这样的两个图形叫位似图形,相交的点叫位似中心。 九年级数学学问点复习提纲 篇3 1、概念: 把一个图形围着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。 旋转三要素:旋转中心、旋转方面、旋转角。 2、旋转的性质: (1)旋转前后的两个图形是全等形; (2)两个对应点到旋转中心的距离相等 (3)两个对应点与旋转中心的连线段的夹角等于旋转角 3、中心对称: 把一个图形围着某一个点旋转180,假如它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心. 这两个图形中的对应点叫做关于中心的对称点. 4、中心对称的性质: (1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分. (2)关于中心对称的两个图形是全等图形. 5、中心对称图形: 把一个图形围着某一个点旋转180,假如旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心. 6、坐标系中的中心对称 两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点P(-x,-y)。 九年级数学学问点复习提纲 篇4 1、 圆的有关概念: (1)、确定一个圆的要素是圆心和半径。 (2)连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。圆上任意两点间的局部叫做圆弧,简称弧。小于半圆周的圆弧叫做劣弧。大于半圆周的圆弧叫做优弧。在同圆或等圆中,能够相互重合的弧叫做等弧。顶点在圆上,并且两边和圆相交的角叫圆周角。经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。 2、 圆的有关性质 (1)定理在同圆或等圆中,假如圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。推论在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。 (2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。弦的垂直平分线经过圆心,并且平分弦所对的两条弧。平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。 推论2:圆的两条平行弦所夹的弧相等。 (3)圆周角定理:一条弧所对的圆周角等于该弧所对的圆心角的一半。推论1在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。推论2半圆或直径所对的圆周角都相等,都等于90 。90 的圆周角所对的弦是圆的直径。推论3假如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 (4)切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直线是圆的切线。性质定理:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点切垂直于切线的直线必经过圆心。 (5)定理:不在同一条直线上的三个点确定一个圆。 (6)圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长;切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角。 (7)圆内接四边形对角互补,一个外角等于内对角;圆外切四边形对边和相等; (8)弦切角定理:弦切角等于它所它所夹弧对的圆周角。 (9)和圆有关的比例线段:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。假如弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两条线段长的积相等。 (10)两圆相切,连心线过切点;两圆相交,连心线垂直平分公共弦。 九年级数学学问点复习提纲 篇5 一次函数的解析式 点斜式:y-y1=k(x-x1)(k为直线斜率,(x1,y1)为该直线所过的一个点); 两点式:(y-y1) / (y2-y1)=(x-x1)/(x2-x1)(已知直线上(x1,y1)与(x2,y2)两点), 截距式:x/a+y/b=1 (a、b分别为直线在x、y轴上的截距)。 解析式表达的局限性: 所需条件较多(2个点,由于使用待定系数法需要列一个二元一次方程组); 不能表达没有斜率的直线(即垂直于x轴的直线;留意没有斜率的直线平行于y轴表述不准,由于x=0与y轴重合); 不能表达平行于坐标轴的直线和过原点的直线。 x轴的正半轴逆时针旋转到直线所成的角(直线与x轴正方向所成的角)称为直线的倾斜角。设始终线的倾斜角为,则该直线的斜率k=tan。倾斜角的范围为(0, )。 只要这样踏踏实实完成每天的规划和小目标,就可以自如地应对新学习,到达长远目标。 九年级数学学问点复习提纲 篇6 1.轴对称: 把一个图形沿着某一条直线折叠,假如它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。 2.轴对称图形: 假如一个图形沿着一条直线折叠,直线两旁的局部能够相互重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。 留意:对称轴是直线而不是线段 3.轴对称的性质: (1)关于某条直线对称的两个图形是全等形; (2)假如两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线; (3)两个图形关于某条直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上; (4)假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。 4.线段垂直平分线: (1)定义:垂直平分一条线段的直线是这条线的垂直平分线。 (2)性质: 线段垂直平分线上的点到这条线段两个端点的距离相等; 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 留意:依据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。 5.角的平分线: (1)定义:把一个角分成两个相等的角的射线叫做角的平分线。 (2)性质: 在角的平分线上的点到这个角的两边的距离相等。 到一个角的两边距离相等的点,在这个角的平分线上。 留意:依据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等。 6.等腰三角形的性质与判定: 性质: (1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴; (2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合; (3)等边对等角:等腰三角形的两个底角相等。 说明:等腰三角形的性质除三线合一外,三角形中的主要线段之间也存在着特别的性质,如: 等腰三角形两底角的平分线相等; 等腰三角形两腰上的中线相等; 等腰三角形两腰上的高相等; 等腰三角形底边上的中点到两腰的距离相等。 判定定理:假如一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。 7.等边三角形的性质与判定: 性质: (1)等边三角形的三个角都相等,并且每个角都等于60 (2)等边三角形具有等腰三角形的全部性质,并且在每条边上都有三线合一。因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴。 判定定理:有一个角是60的等腰三角形是等边三角形。 说明:等边三角形是一种特别的三角形,简单知道等边三角形的三条高(或三条中线、三条角平分线)都相等。

    注意事项

    本文(九年级数学知识点复习提纲.docx)为本站会员(碎****木)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开