欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    中考数学三角形知识点总结.docx

    • 资源ID:95254934       资源大小:20.84KB        全文页数:23页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    中考数学三角形知识点总结.docx

    中考数学三角形知识点总结 1、中考数学三角形学问点总结 总结是事后对某一阶段的学习或工作状况作加以回忆检查并分析评价的书面材料,他能够提升我们的书面表达力量,不如静下心来好好写写总结吧。但是却发觉不知道该写些什么,以下是小编为大家收集的中考数学三角形学问点总结,仅供参考,大家一起来看看吧。 一、三角形的有关概念 1.三角形:由不在同始终线上的三条线段首尾顺次相接组成的图形叫三角形。 三角形的特征:不在同始终线上;三条线段;首尾顺次相接;三角形具有稳定性。 2.三角形中的三条重要线段:角平分线、中线、高 (1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 (2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。 (3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 说明:三角形的角平分线、中线、高都是线段;三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。 二、等腰三角形的性质和判定 (1)性质 1.等腰三角形的两个底角相等(简写成“等边对等角“)。 2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一“)。 3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。 4.等腰三角形底边上的垂直平分线到两条腰的距离相等。 5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。 6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。 7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。 (2)判定 在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。 在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。 三、直角三角形和勾股定理 有一个角是直角的三角形是直角三角形,在直角三角形中,斜边中线等于斜边的一半;30度所对的直角边等于斜边的一半;直角三角形常用面积法求斜边上的高。 勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。 勾股数肯定是正整数,常见勾股数:3,4,5;5,12,13;6,8,10,;7,24,25;8,15,17;9,12,15。 方法总结: 当不明确直角三角形的斜边长,应把已知最长边分为直角边和斜边两种状况争论。无理数在数轴上的表示和线段长表示通常用到勾股定理。翻折题型常用勾股定理(口诀:翻折求边找直角,勾股定理设未知量) 假如三角形的三边长a,b,c有关系a2+b2=c2,那么这个三角形是直角三角形。勾股定理的逆定理,常用于推断三角形的外形,先确定最大边(可以设为c)。 四、初中三角形中线定理 中线定理又称阿波罗尼奥斯定理,是欧氏几何的定理,表述三角形三边和中线长度关系。 定理内容:三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。 中线的定义:任何三角形都有三条中线,而且这三条中线都在三角形的内部,并交于一点。 由定义可知,三角形的中线是一条线段。 由于三角形有三条边,所以一个三角形有三条中线。 且三条中线交于一点。这点称为三角形的重心。 每条三角形中线分得的两个三角形面积相等。 五、直角三角形的判定 判定1:有一个角为90°的三角形是直角三角形。 判定2:若a的平方+b的平方=c的平方,则以a、b、c为边的三角形是以c为斜边的直角三角形(勾股定理的逆定理)。 判定3:若一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形。 判定4:两个锐角互余的三角形是直角三角形。 判定5:证明直角三角形全等时可以利用HL,两个三角形的斜边长对应相等,以及一个直角边对应相等,则两直角三角形全等。定理:斜边和一条直角对应相等的两个直角三角形全等。简称为HL 判定6:若两直线相交且它们的”斜率之积互为负倒数,则这两直线垂直。 判定7:在一个三角形中若它一边上的中线等于这条中线所在边的一半,那么这个三角形为直角三角形。 六、勾股定理的逆定理 假如三角形三边长a,b,c满意,那么这个三角形是直角三角形,其中c为斜边。 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能外形,在运用这肯定理时,可用两小边的平方和与较长边的平方作比拟,若它们相等时,以a,b,c为三边的三角形是直角三角形;若时,以a,b,c为三边的三角形是钝角三角形;若时,以a,b,c为三边的三角形是锐角三角形; 定理中a,b,c及只是一种表现形式,不行认为是唯一的,如若三角形三边长a,b,c满意,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边. 勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形。 七、三角形定理公式 三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边。 三角形的内角和定理:三角形的三个内角的和等于180度。 三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和。 三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角。 三角形的三条角平分线交于一点(内心)。 三角形的三边的垂直平分线交于一点(外心)。 三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半。 2、中考数学三角形学问点总结 总结是事后对某一阶段的学习或工作状况作加以回忆检查并分析评价的书面材料,他能够提升我们的书面表达力量,不如静下心来好好写写总结吧。但是却发觉不知道该写些什么,以下是小编为大家收集的中考数学三角形学问点总结,仅供参考,大家一起来看看吧。 一、三角形的有关概念 1.三角形:由不在同始终线上的三条线段首尾顺次相接组成的图形叫三角形。 三角形的特征:不在同始终线上;三条线段;首尾顺次相接;三角形具有稳定性。 2.三角形中的三条重要线段:角平分线、中线、高 (1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 (2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。 (3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 说明:三角形的角平分线、中线、高都是线段;三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。 二、等腰三角形的性质和判定 (1)性质 1.等腰三角形的两个底角相等(简写成“等边对等角“)。 2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一“)。 3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。 4.等腰三角形底边上的垂直平分线到两条腰的距离相等。 5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。 6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。 7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。 (2)判定 在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。 在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。 三、直角三角形和勾股定理 有一个角是直角的三角形是直角三角形,在直角三角形中,斜边中线等于斜边的一半;30度所对的直角边等于斜边的一半;直角三角形常用面积法求斜边上的高。 勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。 勾股数肯定是正整数,常见勾股数:3,4,5;5,12,13;6,8,10,;7,24,25;8,15,17;9,12,15。 方法总结: 当不明确直角三角形的斜边长,应把已知最长边分为直角边和斜边两种状况争论。无理数在数轴上的表示和线段长表示通常用到勾股定理。翻折题型常用勾股定理(口诀:翻折求边找直角,勾股定理设未知量) 假如三角形的三边长a,b,c有关系a2+b2=c2,那么这个三角形是直角三角形。勾股定理的逆定理,常用于推断三角形的外形,先确定最大边(可以设为c)。 四、初中三角形中线定理 中线定理又称阿波罗尼奥斯定理,是欧氏几何的定理,表述三角形三边和中线长度关系。 定理内容:三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。 中线的定义:任何三角形都有三条中线,而且这三条中线都在三角形的内部,并交于一点。 由定义可知,三角形的中线是一条线段。 由于三角形有三条边,所以一个三角形有三条中线。 且三条中线交于一点。这点称为三角形的重心。 每条三角形中线分得的两个三角形面积相等。 五、直角三角形的判定 判定1:有一个角为90°的三角形是直角三角形。 判定2:若a的平方+b的平方=c的平方,则以a、b、c为边的三角形是以c为斜边的直角三角形(勾股定理的逆定理)。 判定3:若一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形。 判定4:两个锐角互余的三角形是直角三角形。 判定5:证明直角三角形全等时可以利用HL,两个三角形的斜边长对应相等,以及一个直角边对应相等,则两直角三角形全等。定理:斜边和一条直角对应相等的两个直角三角形全等。简称为HL 判定6:若两直线相交且它们的”斜率之积互为负倒数,则这两直线垂直。 判定7:在一个三角形中若它一边上的中线等于这条中线所在边的一半,那么这个三角形为直角三角形。 六、勾股定理的逆定理 假如三角形三边长a,b,c满意,那么这个三角形是直角三角形,其中c为斜边。 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能外形,在运用这肯定理时,可用两小边的平方和与较长边的平方作比拟,若它们相等时,以a,b,c为三边的三角形是直角三角形;若时,以a,b,c为三边的三角形是钝角三角形;若时,以a,b,c为三边的三角形是锐角三角形; 定理中a,b,c及只是一种表现形式,不行认为是唯一的,如若三角形三边长a,b,c满意,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边. 勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形。 七、三角形定理公式 三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边。 三角形的内角和定理:三角形的三个内角的和等于180度。 三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和。 三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角。 三角形的三条角平分线交于一点(内心)。 三角形的三边的垂直平分线交于一点(外心)。 三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半。 3、九年级数学学问点总结初三学生数学学问点归纳 1.过两点有且只有一条直线 2.两点之间线段最短 3.同角或等角的补角相等 4.同角或等角的余角相等 5.过一点有且只有一条直线和已知直线垂直 6.直线外一点与直线上各点连接的全部线段中,垂线段最短 7.平行公理经过直线外一点,有且只有一条直线与这条直线平行 8.假如两条直线都和第三条直线平行,这两条直线也相互平行 9.同位角相等,两直线平行 10.内错角相等,两直线平行 11.同旁内角互补,两直线平行 12.两直线平行,同位角相等 13.两直线平行,内错角相等 14.两直线平行,同旁内角互补 15.定理三角形两边的和大于第三边 16.推论三角形两边的差小于第三边 17.三角形内角和定理三角形三个内角的和等于180° 18.推论1直角三角形的两个锐角互余 19.推论2三角形的一个外角等于和它不相邻的两个内角的和 20.推论3三角形的一个外角大于任何一个和它不相邻的内角 21.全等三角形的对应边、对应角相等 22.边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 23.角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 24.推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 25.边边边公理(SSS)有三边对应相等的两个三角形全等 26.斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 27.定理1在角的平分线上的点到这个角的两边的距离相等 28.定理2到一个角的两边的距离一样的点,在这个角的平分线上 29.角的平分线是到角的两边距离相等的全部点的集合 30.等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31.推论1等腰三角形顶角的平分线平分底边并且垂直于底边 32.等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合 33.推论3等边三角形的”各角都相等,并且每一个角都等于60° 34.等腰三角形的判定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35.推论1三个角都相等的三角形是等边三角形 36.推论2有一个角等于60°的等腰三角形是等边三角形 37.在直角三角形中,假如一个锐角等于30°那么它所对的直角边等于斜边的一半 38.直角三角形斜边上的中线等于斜边上的一半 39.定理线段垂直平分线上的点和这条线段两个端点的距离相等 40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41.线段的垂直平分线可看作和线段两端点距离相等的全部点的集合 42.定理1关于某条直线对称的两个图形是全等形 43.定理2假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44.定理3两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上 45.逆定理假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47.勾股定理的逆定理假如三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形 48.定理四边形的内角和等于360° 49.四边形的外角和等于360° 50.多边形内角和定理n边形的内角的和等于(n-2)×180° 51.推论任意多边的外角和等于360° 4、九年级数学学问点总结初三学生数学学问点归纳 第一章实数 一、重要概念1.数的分类及概念数系表: 说明:“分类”的原则:1)相称(不重、不漏)2)有标准 2.非负数:正实数与零的统称。(表为:x0) 性质:若干个非负数的和为0,则每个非负数均为0。 3.倒数:定义及表示法 性质:A.a1/a(a±1);B.1/a中,a0;C.01时,1/a1;D.积为1。 4.相反数:定义及表示法 性质:A.a0时,a-a;B.a与-a在数轴上的位置;C.和为0,商为-1。 5.数轴:定义(“三要素”) 作用:A.直观地比拟实数的大小;B.明确表达肯定值意义;C.建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数自然数) 定义及表示: 奇数:2n-1 偶数:2n(n为自然数) 7.肯定值:定义(两种): 代数定义: 几何定义:数a的肯定值顶的几何意义是实数a在数轴上所对应的点到原点的距离。 a0,符号“”是“非负数”的标志;数a的肯定值只有一个;处理任何类型的题目,只要其中有“”消失,其关键一步是去掉“”符号。 二、实数的运算 1.运算法则(加、减、乘、除、乘方、开方) 2.运算定律(五个加法乘法交换律、结合律;乘法对加法的 安排律) 3.运算挨次:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷×5);C.(有括号时)由“小”到“中”到“大”。 三、应用举例(略) 附:典型例题 1.已知:a、b、x在数轴上的位置如下列图,求证:x-a+x-b =b-a. 2.已知:a-b=-2且ab0,(a0,b0),推断a、b的符号。 其次章代数式 重点代数式的有关概念及性质,代数式的运算 内容提要 一、重要概念 分类: 1.代数式与有理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独 的一个数或字母也是代数式。 整式和分式统称为有理式。 2.整式和分式 含有加、减、乘、除、乘方运算的代数式叫做有理式。 没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。 有除法运算并且除式中含有字母的有理式叫做分式。 3.单项式与多项式 没有加减运算的整式叫做单项式。(数字与字母的积包括单独的一个数或字母) 几个单项式的和,叫做多项式。 说明:依据除式中有否字母,将整式和分式区分开;依据整式中有否加减运算,把单项式、多项式区分开。进展代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从形状来看。如, =x,=x等。 4.系数与指数 区分与联系:从位置上看;从表示的意义上看 5.同类项及其合并 条件:字母一样;一样字母的指数一样 合并依据:乘法安排律 6.根式 表示方根的代数式叫做根式。 含有关于字母开方运算的代数式叫做无理式。 留意:从形状上推断;区分:、是根式,但不是无理式(是无理数)。 7.算术平方根 正数a的正的平方根(a0与“平方根”的区分); 算术平方根与肯定值 联系:都是非负数,=a 区分:a中,a为一切实数;中,a为非负数。 8.同类二次根式、最简二次根式、分母有理化 化为最简二次根式以后,被开方数一样的二次根式叫做同类二次根式。 满意条件:被开方数的因数是整数,因式是整式;被开方数中不含有开得尽方的因数或因式。 把分母中的根号划去叫做分母有理化。 9.指数 (幂,乘方运算) a0时,0;a0时,0(n是偶数),0(n是奇数) 零指数:=1(a0) 负整指数:=1/(a0,p是正整数) 二、运算定律、性质、法则 1.分式的加、减、乘、除、乘方、开方法则 2.分式的性质 根本性质:=(m0) 符号法则: 繁分式:定义;化简方法(两种) 3.整式运算法则(去括号、添括号法则) 4.幂的运算性质:=;÷=;=;=; 技巧: 5.乘法法则:单×单;单×多;多×多。 6.乘法公式:(正、逆用) (a+b)(a-b)= (a±b)= 7.除法法则:单÷单;多÷单。 8.因式分解:定义;方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。 9.算术根的性质:=;(a0,b0);(a0,b0)(正用、逆用) 10.根式运算法则:加法法则(合并同类二次根式);乘、除法法则;分母有理化:A.;B.;C. 5、初中数学相像三角形定理学问点总结 相像三角形是几何中重要的证明模型之一,是全等三角形的推广。全等三角形可以被理解为相像比为1的相像三角形。相像三角形其实是一套定理的集合,它主要描述了在相像三角形是几何中两个三角形中,边、角的关系。下面是小编为大家带来的初中数学相像三角形定理学问点总结,欢送阅读。 相像三角形定理 1.相像三角形定义: 对应角相等,对应边成比例的三角形,叫做相像三角形。 2.相像三角形的表示方法:用符号“表示,读作“相像于“。 3.相像三角形的相像比: 相像三角形的对应边的比叫做相像比。 4.相像三角形的预备定理: 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相像。 从表中可以看出只要将全等三角形判定定理中的“对应边相等“的条件改为“对应边 成比例“就可得到相像三角形的判定定理,这就是我们数学中的用类比的方法,在旧学问的根底上找出新学问并从中探究新学问把握的方法。 6.直角三角形相像: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相像。 (2)假如一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相像。 7.相像三角形的性质定理: (1)相像三角形的对应角相等。 (2)相像三角形的对应边成比例。 (3)相像三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相像比。 (4)相像三角形的周长比等于相像比。 (5)相像三角形的面积比等于相像比的平方。 8. 相像三角形的传递性 假如ABCA1B1C1,A1B1C1A2B2C2,那么ABCA2B2C2 6、八年级数学三角形学问点总结 总结是指对某一阶段的工作、学习或思想中的阅历或状况进展分析讨论,做出带有规律性结论的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,不如静下心来好好写写总结吧。那么总结应当包括什么内容呢?以下是小编为大家整理的关于八年级数学三角形学问点总结,欢送阅读与保藏。 1、线段垂直平分线的性质定理及逆定理 垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。 线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 2、角的平分线及其性质 一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。角的平分线有下面的性质定理: (1)角平分线上的点到这个角的两边的距离相等。 (2)到一个角的两边距离相等的点在这个角的平分线上。 垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:直线外一点与直线上各点连接的”全部线段中,垂线段最短。简称:垂线段最短。2、三角形中的主要线段 (1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。 (2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。 (3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。 3、三角形的稳定性 三角形的外形是固定的,三角形的这共性质叫做三角形的稳定性。三角形的这共性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的外形。 (1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。 (2)三角形三边关系定理及推论的作用: 推断三条已知线段能否组成三角形 当已知两边时,可确定第三边的范围。 证明线段不等关系。 三角形的内角和定理:三角形三个内角和等于180°。推论: 直角三角形的两个锐角互余。 三角形的一个外角等于和它不相邻的来两个内角的和。三角形的一个外角大于任何一个和它不相邻的内角。 注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。等角的补角相等,等角的余角相等。 中考数学三角形学问点总结这篇文章共27475字。

    注意事项

    本文(中考数学三角形知识点总结.docx)为本站会员(1513****116)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开