欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2013上海考研数学一真题及答案.docx

    • 资源ID:95260807       资源大小:567.59KB        全文页数:15页
    • 资源格式: DOCX        下载积分:5.5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5.5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2013上海考研数学一真题及答案.docx

    2013上海考研数学一真题及答案一、选择题:18小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)已知极限,其中为常数,且,则( )(A)(B)(C)(D)(2)曲面在点处的切平面方程为( )(A)(B)(C)(D)(3)设,令,则( )(A)(B)(C)(D)(4)设为四条逆时针的平面曲线,记,则( )(A)(B)(C)(D)(5)设矩阵A,B,C均为n阶矩阵,若(A)矩阵C的行向量组与矩阵A的行向量组等价(B)矩阵C的列向量组与矩阵A的列向量组等价(C)矩阵C的行向量组与矩阵B的行向量组等价(D)矩阵C的行向量组与矩阵B的列向量组等价(6)矩阵与相似的充分必要条件为(A)(B)(C)(D)(7)设是随机变量,且,则( )(A)(B)(C)(D)(8)设随机变量给定常数c满足,则( )(A)(B)(C)(D)二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数由方程确定,则 (10)已知,是某二阶常系数非齐次线性微分方程的3个解,该方程的通解为 (11)设(为参数),则 (12) (13)设是三阶非零矩阵,为A的行列式,为的代数余子式,若(14)设随机变量Y服从参数为1的指数分布,为常数且大于零,则_。三、解答题:1523小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)计算其中(16)(本题满分10分)设数列满足条件:是幂级数的和函数,(I) 证明:,(II) 求的表达式.(17)(本题满分10分)求函数的极值.(18)(本题满分10分)设奇函数上具有2阶导数,且证明:(I) 存在(II) 存在,使得(19)(本题满分10分)设直线L过两点,将L绕Z轴旋转一周得到曲面所围成的立体为,(I) 求曲面的方程(II) 求的形心坐标.(20)(本题满分11分)设,当为何值时,存在矩阵使得,并求所有矩阵。(21)(本题满分11分)设二次型,记。(I)证明二次型对应的矩阵为;(II)若正交且均为单位向量,证明二次型在正交变化下的标准形为二次型。(22)(本题满分11分)设随机变量的概率密度为,令随机变量,(I)求Y的分布函数(II)求概率(23)(本题满分11分)设总体的概率密度为其中为未知参数且大于零,为来自总体的简单随机样本.(1)求的矩估计量;(2)求的最大似然估计量.2013年全国硕士研究生入学统一考试数学一试题答案一、选择题:18小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)已知极限,其中为常数,且,则( )(A)(B)(C)(D)【答案】D【解析】(2)曲面在点处的切平面方程为( )(A)(B)(C)(D)【答案】A【解析】设,则;,所以该曲面在点处的切平面方程为,化简得,选A(3)设,令,则( )(A)(B)(C)(D)【答案】C【解析】根据题意,将函数在上奇延拓,它的傅里叶级数为它是以2为周期的,则当且在处连续时,因此(4)设为四条逆时针的平面曲线,记,则( )(A)(B)(C)(D)【答案】D【解析】 利用二重积分的几何意义,比较积分区域以及函数的正负,在区域上函数为正值,则区域大,积分大,所以,在之外函数值为负,因此,故选D。(5)设矩阵A,B,C均为n阶矩阵,若,且可逆,则( )(A)矩阵C的行向量组与矩阵A的行向量组等价(B)矩阵C的列向量组与矩阵A的列向量组等价(C)矩阵C的行向量组与矩阵B的行向量组等价(D)矩阵C的行向量组与矩阵B的列向量组等价【答案】(B)【解析】由可知C的列向量组可以由A的列向量组线性表示,又B可逆,故有,从而A的列向量组也可以由C的列向量组线性表示,故根据向量组等价的定义可知正确选项为(B)。(6)矩阵与相似的充分必要条件为(A)(B)(C)(D)【答案】(B)【解析】由于为实对称矩阵,故一定可以相似对角化,从而与相似的充分必要条件为的特征值为。又,从而。(7)设是随机变量,且,则( )(A)(B)(C)(D)【答案】(A)【解析】由知,故.由根据及概率密度的对称性知,故选(A)(8)设随机变量给定常数c满足,则( )(A)(B)(C)(D)【答案】(C)【解析】由得,故二、填空题(914小题,每小题4分,共24分请将答案写在答题纸指定位置上)(9)设函数由方程确定,则 【答案】1【解析】 由,当时, 方程两边取对数 两边同时对求导,得将,代入上式,得(10)已知,是某二阶常系数非齐次线性微分方程的3个解,该方程的通解为 【答案】【解析】因,是非齐次线性线性微分方程的解,则是它所对应的齐次线性微分方程的解,可知对应的齐次线性微分方程的通解为,因此该方程的通解可写为(11)设(为参数),则 【答案】【解析】, , ,所以,所以(12) 【答案】【解析】(13)设是三阶非零矩阵,为A的行列式,为的代数余子式,若【答案】【解析】(14)设随机变量X服从标准正态分布,则= _。【答案】【解析】由及随机变量函数的期望公式知.三、解答题:1523小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)计算其中【解析】(16)(本题满分10分)设数列满足条件:是幂级数的和函数,(III) 证明:,(IV) 求的表达式.【解析】(I)设,因为,因此;(II)方程的特征方程为,解得,所以,又,解得,所以。17(本题满分10分)求函数的极值.【解析】解得,对于点,为极小值点,极小值为对于,,不是极值.(18)(本题满分10分)设奇函数上具有2阶导数,且证明:(III) 存在(IV) 存在,使得【解析】(1)令则使得(2)令则又由于为奇函数,故为偶函数,可知,则使即,即(19)(本题满分10分)设直线L过两点,将L绕Z轴旋转一周得到曲面所围成的立体为,(III) 求曲面的方程(IV) 求的形心坐标.【解析】(1)过两点,所以其直线方程为:所以其绕着轴旋转一周的曲面方程为:(2)由形心坐标计算公式可得,所以形心坐标为(20)(本题满分11分)设,当为何值时,存在矩阵使得,并求所有矩阵。【解析】由题意可知矩阵C为2阶矩阵,故可设,则由可得线性方程组: (1)由于方程组(1)有解,故有,即从而有,故有从而有(21)(本题满分11分)设二次型,记。(I)证明二次型对应的矩阵为;(II)若正交且均为单位向量,证明二次型在正交变化下的标准形为二次型。【解析】(1) (2),则1,2均为A的特征值,又由于,故0为A的特征值,则三阶矩阵A的特征值为2,1,0,故f在正交变换下的标准形为(22)(本题满分11分)设随机变量的概率密度为,令随机变量,(I)求Y的分布函数(II)求概率【解析】(1)由的概率分布知,当时,;当时,;当时, = (2) (23)(本题满分11分)设总体的概率密度为其中为未知参数且大于零,为来自总体的简单随机样本.(1)求的矩估计量;(2)求的最大似然估计量.【解析】(1),令,故矩估计量为.(2) 当时,令,得,所以得极大似然估计量=.

    注意事项

    本文(2013上海考研数学一真题及答案.docx)为本站会员(wo****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开