欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    多边形的内角和教学设计小学教育小学_小学教育-小学教育.pdf

    • 资源ID:95389217       资源大小:559.92KB        全文页数:8页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    多边形的内角和教学设计小学教育小学_小学教育-小学教育.pdf

    学习必备 欢迎下载 11.3.2 多边形的内角和(教学设计)一、教学目标 1、知识与技能:(1)探索并了解多边形的内角和公式。(2)能对多边形的内角和公式进行应用,解决实际问题。(3)掌握多边形的外角和定理,并能运用。2、过程与方法:(1)通过量,拼,分,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。(2)通过把多边形转化成三角形体会转化思想在几何中的运用,让学生尝试从不同的角度寻求解决问题的方法,同时让学生体会从特殊到一般的认识问题的方法。3、情感态度与价值观:(1)通过师生共同活动,培养学生创新精神,增强学生对数学的好奇心与求知欲。(2)向学生渗透类比、转化的数学思想,并使学生学会与他人合作。二、教学重难点 重点:多边形内角和定理与外角和定理的推导及运用。难点:将多边形的内角和转化为三角形的内角和,找出它们之间的关系。三、教法:启发式、探索式 四、学法:自主探索、合作交流 五、前置作业:1、做一个不规则四边形学具;2、用尽可能多的方法探究多边形的内角和。(目的:一是让学生结合自己已有的生活经验,尝试应用更多的方法来探究多边形的内角和。二是制作一个学具,学习必备 欢迎下载 通过操作学具来触发学生的思考,为重难点的突破打好基础。)六、教学过程:(一)创设问题情境,导入新课 课件出示一组生活中的图片 问题 1:看完这组图片,你能抽象出哪些几何图形 问题 2:生活中有如此多几何图形,你对它们有多少了解?设置意图:学生能说出发现了三角形、四边形、五边形、六边形、八边形进而指出什么是多边形。老师指出三角形是最简单的多边形,三角形的内角和是 180度,那多边形的内角和是多少呢?从而顺利引入新课。过渡语:我们知道三角形的内角和等于 180度,正方形,长方形的内角和等于 360度,那么四边形、五边形、六边形呢?今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。”(板书课题)二、合作交流、探究新知 活动一:探究“任意四边形的内角和”问题 1:任意四边形的内角和是多少度?你是怎样得到的?你能找到几种方法?活动任务:用用尽可能多的方法探索四边形的内角和 活动要求:1.先自己想,再小组交流。2.然后每个小组派两名同学代表展示,并说出方法。内角和公式进行应用解决实际问题掌握多边形的外角和定理并能运用过程与方法通过量拼分类比推理等教学活动探索多边形的内角和公式感受数学思考过程的条理性发展推理能力和语言表达能力通过把多边形转化成三角形体会转化法情感态度与价值观通过师生共同活动培养学生创新精神增强学生对数学的好奇心与求知欲向学生渗透类比转化的数学思想并使学生学会与人合作二教学重难点重点多边形内角和定理与外角和定理的推导及运用难点将多边形的内角规则四边形学具用尽可能多的方法探究多边形的内角和目的一是让学生结合自己已有的生活经验尝试应用更多的方法来探究多边形的内角和二是制作一个学具学习必备欢迎下载通过操作学具来触发学生的思考为重难点的突破打好基学习必备 欢迎下载 交流展示:一个小组上台展示探索过程,其他小组补充,并说出不同点。组织学生以小组为单位进行展示,结合学生的回答教师适时搭建支架,引导学生发现在测量和剪拼活动中可能会产生误差,通过量或拼的方法得到的内角和可能不是 360度,要告诉学生由此感受到作辅助线在解决几何问题中的必要性。预设:这个环节学生可能出现“度量”、“剪拼”、“作辅助线”等等甚至更多的方法)预设学生 1、量:任意画一个四边形,量一量它的四个内角,算一算它们的和,预设学生 2、拼:把准备好的四边形纸卡纸,标上字母,然后把其中的三个内角剪下,拼到最后一个内角上,看看会有什么结果。预设学生 3、分:把四边形转化成三角形来求 预设:(方法三学生可能想不到)预设问题 2:能否把四边形转化成三角形来求呢?怎样进行转化呢?活动任务:用用尽可能多的方法把四边形转化成三角形 活动要求:1.先自己画,再小组交流画法。2.小组交流之后,汇总小组意见 分析做法中有什么不同?有不同意见的吗?交流展示:组织学生以小组为单位进行展示,结合学生的回答教师适时搭建支架,引导学生发现利用数学转化思想,把求多边形的内角和的问题转化为求若干三角形的内角和,关键是将 n边形分割转化为三角形。预设学生 1:过四边形一个顶点,作四边形的一条对角线,把四边形分成两个三角形,这样进行转化得到结论四边形的内角和为:2 180=360 内角和公式进行应用解决实际问题掌握多边形的外角和定理并能运用过程与方法通过量拼分类比推理等教学活动探索多边形的内角和公式感受数学思考过程的条理性发展推理能力和语言表达能力通过把多边形转化成三角形体会转化法情感态度与价值观通过师生共同活动培养学生创新精神增强学生对数学的好奇心与求知欲向学生渗透类比转化的数学思想并使学生学会与人合作二教学重难点重点多边形内角和定理与外角和定理的推导及运用难点将多边形的内角规则四边形学具用尽可能多的方法探究多边形的内角和目的一是让学生结合自己已有的生活经验尝试应用更多的方法来探究多边形的内角和二是制作一个学具学习必备欢迎下载通过操作学具来触发学生的思考为重难点的突破打好基学习必备 欢迎下载 预设学生 2:可以在四边形的内部找一个点与四个顶点连接,将四边形分成四个三角形这样进行转化得到结论四边形的内角和为:4 180 360=360 预设学生 3:可以在四边形的一边上找一个点与四个顶点连接,将四边形分成三个三角形这样进行转化得到结论四边形的内角和为:3 180 180=360 预设学生 4:可以在四边形的外部找一个点与四个顶点连接,将四边形分成四个三角形这样进行转化得到结论四边形的内角和为:3 180 180=360 教师在学生展示完后提问:在“量”、“拼”、“分”这几种方法中,哪种方法操作简单又相对准确?我们刚才找到了几种不同的辅助线的作法,它们的共同点是什么?设置意图:针对不同层次的学生,要适当的引导学生利用作辅助线的方法把多边形转化为三角形,鼓励学生寻找多种分割形式,深入领会转化的本质将四边形转化为三角形问题来解决。然后让学生表达自己解决问题的方法,体验解决问题策略的多样性。活动二:探究“多边形的内角和”问题 1:类比四边形的内角和,你能算出五边形、六边形、七边形的内角和吗?活动任务:用用尽可能多的方法探索五边形、六边形、七边形的内角和。活动要求:自主探究,得出结论 交流展示:找代表上台展示探索过程,其他不同方法者补充。预设学生 1:可以利用三角形的内角和。过五边形一个顶点,作五边形的两条对角线,把五边形分成三个三角形,这样进行转化得到结论。内角和公式进行应用解决实际问题掌握多边形的外角和定理并能运用过程与方法通过量拼分类比推理等教学活动探索多边形的内角和公式感受数学思考过程的条理性发展推理能力和语言表达能力通过把多边形转化成三角形体会转化法情感态度与价值观通过师生共同活动培养学生创新精神增强学生对数学的好奇心与求知欲向学生渗透类比转化的数学思想并使学生学会与人合作二教学重难点重点多边形内角和定理与外角和定理的推导及运用难点将多边形的内角规则四边形学具用尽可能多的方法探究多边形的内角和目的一是让学生结合自己已有的生活经验尝试应用更多的方法来探究多边形的内角和二是制作一个学具学习必备欢迎下载通过操作学具来触发学生的思考为重难点的突破打好基学习必备 欢迎下载 预设学生 2:利用分割的方式,将五边形分割为 1 个三角形 1个四边形;将六边形分割为 1 个三角形 1个五边形或2 个四边形;七边形的分割更多。设置意图:继续让学生体会多种分割形式,有利于深入领会转化的本质转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性。问题 2:你能想出六边形和七边形的内角和各是多少吗?六边形的内角和:4 180=720 七边形的内角和:5 180=900 问题 3:多边形的内角和与多边形的边数有什么关系?活动任务:让学生自己归纳总结,得出 n 边形的内角和公式为(n-2)180 活动要求:自主探究,得出结论 交流展示:找代表上台展示探索过程,其他不同方法者补充。难点分解:从五边形、六边形一个顶点作对角线,可引多少条对角线?可把多边形分成多少个三角形?内角和是多少?分成的三角形的个数与多边形的边数有什么关系?n边形从一个顶点可作多少条对角线?可构成多少个三角形?内角和怎样求?为什么?你能得出求 n边形内角和的公式吗?规律探究:多边形的边数 3 4 5 6 7 n 分成的三角形个数 1 2 3 4 5 n-2 内角和公式进行应用解决实际问题掌握多边形的外角和定理并能运用过程与方法通过量拼分类比推理等教学活动探索多边形的内角和公式感受数学思考过程的条理性发展推理能力和语言表达能力通过把多边形转化成三角形体会转化法情感态度与价值观通过师生共同活动培养学生创新精神增强学生对数学的好奇心与求知欲向学生渗透类比转化的数学思想并使学生学会与人合作二教学重难点重点多边形内角和定理与外角和定理的推导及运用难点将多边形的内角规则四边形学具用尽可能多的方法探究多边形的内角和目的一是让学生结合自己已有的生活经验尝试应用更多的方法来探究多边形的内角和二是制作一个学具学习必备欢迎下载通过操作学具来触发学生的思考为重难点的突破打好基学习必备 欢迎下载 多边形的内角和 180 1 180 2 180 3 180 4 180 5 (n-2)180 归纳结论:n 边形的内角和等于(n2)180(n 是大于等于 3 的整数)。设置意图:从探索四边形的内角和,到五边形、六边形、七边形乃至 n边形,通过增强图形的复杂性,让学生体会由简单到复杂,由特殊到一般的思想方法,再一次经历转化的过程,同时在分组交流的过程中,感受合作的重要性。三、应用新知 尝试练习 分组竞赛、情感升华:1、一个多边形每个内角都等于 120,它是()边形?2、一个多边形的内角和等于 1800,它是()边形?3 八边形的内角和是()。4、一个多边形的内角和是 1440,它是()边形。5、解决问题:例 1、如果一个四边形的一组对角互补,那么另一组对角有什么关系 活动任务:让学生利用并熟练掌握 n 边形的内角和公式(n-2)180。活动要求:通过做例题和练习来巩固新知识 交流展示:指名回答,其他不同者补充。设置意图:通过新颖的形式激发学生的竞争意识和主动参与活动的热情。学生利用当堂所学的知识解决问题,巩固本节知识。活动三:探究多边形的外角和 问题 1:在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和。六边形的外角和等于多少度?问题 2:如果将六边形换成 n边形(n 是大于等于 3 的整数),结果还相同吗?内角和公式进行应用解决实际问题掌握多边形的外角和定理并能运用过程与方法通过量拼分类比推理等教学活动探索多边形的内角和公式感受数学思考过程的条理性发展推理能力和语言表达能力通过把多边形转化成三角形体会转化法情感态度与价值观通过师生共同活动培养学生创新精神增强学生对数学的好奇心与求知欲向学生渗透类比转化的数学思想并使学生学会与人合作二教学重难点重点多边形内角和定理与外角和定理的推导及运用难点将多边形的内角规则四边形学具用尽可能多的方法探究多边形的内角和目的一是让学生结合自己已有的生活经验尝试应用更多的方法来探究多边形的内角和二是制作一个学具学习必备欢迎下载通过操作学具来触发学生的思考为重难点的突破打好基学习必备 欢迎下载 活动任务:让学生归纳六边形以及 n 边形的外角和为360 活动要求:1、自主探究,得出结论 2、小组交流,汇总小组意见 交流展示:找代表上台展示探索过程,其他不同方法者补充。师可拆分问题,使难点分解:(1)任何一个外角与同它相邻的内角有什么关系?(2)六边形六个外角加上与它们相邻的内角总和是多少?(3)上述总和与六边形的内角和、外角和有什么关系?探索预设:利用外角与相邻内角的互补关系,多边形的内角和公式即可求出外角和为 360度。四、课堂小结:问题:本节课我们探索了多边形的内角和多边形的外角和有关知识接下来我们一起来梳理一下,我们可以从哪些方面来总结我们的收获呢?预设 1:学生能从知识、探索过程和思想方法三个方面进行总结;预设 2:学生不能有条理的从三个方面进行分类总结。教师引导语预设:当学生不能有条理的从三个方面进行分类总结时,教师可结合现有的板书,引导学生回忆学习过程:探索过程可结合本节课的学习方式进行回忆:发现问题、提出问题、分析问题和解决问题(或具体的知识点学习:“量”、“拼”、“分”,方程的思想、转化的思想等。),体会数学中的类比和转化的数学思想。教师补充解释:在知识总结中,教师补充:在多边形的内角和推导方法中,我们一般用多边形的对角线分割多边形 五、机动练习 内角和公式进行应用解决实际问题掌握多边形的外角和定理并能运用过程与方法通过量拼分类比推理等教学活动探索多边形的内角和公式感受数学思考过程的条理性发展推理能力和语言表达能力通过把多边形转化成三角形体会转化法情感态度与价值观通过师生共同活动培养学生创新精神增强学生对数学的好奇心与求知欲向学生渗透类比转化的数学思想并使学生学会与人合作二教学重难点重点多边形内角和定理与外角和定理的推导及运用难点将多边形的内角规则四边形学具用尽可能多的方法探究多边形的内角和目的一是让学生结合自己已有的生活经验尝试应用更多的方法来探究多边形的内角和二是制作一个学具学习必备欢迎下载通过操作学具来触发学生的思考为重难点的突破打好基学习必备 欢迎下载 拓展探究:用一把剪刀,将一张正方形卡片一个角截去,剩下的卡片是一个几边形?它的内角和是多少?活动要求:1、小组合作探究,引导学生分析可能的每一种截取情况,根据不同截法得出不同结论。2、鼓励学生积极参与思考、大胆尝试、主动探讨、勇于创新。设置意图:让学生深刻的感受到合作交流的重要性,体会成功的喜悦。六、作业 1.习题 11.3 第 5、6题 2、选做题:用另外两种作辅助线的方法证明多边形内角和定理。设置意图:采用分层布置作业,让不同水平的学生得到不同的发展,培养学生的思维灵活性及成就感,从而贯彻因材施教的原则。内角和公式进行应用解决实际问题掌握多边形的外角和定理并能运用过程与方法通过量拼分类比推理等教学活动探索多边形的内角和公式感受数学思考过程的条理性发展推理能力和语言表达能力通过把多边形转化成三角形体会转化法情感态度与价值观通过师生共同活动培养学生创新精神增强学生对数学的好奇心与求知欲向学生渗透类比转化的数学思想并使学生学会与人合作二教学重难点重点多边形内角和定理与外角和定理的推导及运用难点将多边形的内角规则四边形学具用尽可能多的方法探究多边形的内角和目的一是让学生结合自己已有的生活经验尝试应用更多的方法来探究多边形的内角和二是制作一个学具学习必备欢迎下载通过操作学具来触发学生的思考为重难点的突破打好基

    注意事项

    本文(多边形的内角和教学设计小学教育小学_小学教育-小学教育.pdf)为本站会员(Che****ry)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开